首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying the extent to which geomorphic features can be used to extract tectonic signals is a key challenge in the Earth Sciences. Here we analyse the drainage patterns, geomorphic impact, and long profiles of bedrock rivers that drain across and around normal faults in a regionally significant oblique-extensional graben (Hatay Graben) in southern Turkey that has been mapped geologically, but for which there are poor constraints on the activity, slip rates and Plio–Pleistocene evolution of basin-bounding faults. We show that drainage in the Hatay Graben is strongly asymmetric, and by mapping the distribution of wind gaps, we are able to evaluate how the drainage network has evolved through time. By comparing the presence, size, and distribution of long profile convexities, we demonstrate that the northern margin of the graben is tectonically quiescent, whereas the southern margin is bounded by active faults. Our analysis suggests that rivers crossing these latter faults are undergoing a transient response to ongoing tectonic uplift, and this interpretation is supported by classic signals of transience such as gorge formation and hill slope rejuvenation within the convex reach. Additionally, we show that the height of long profile convexities varies systematically along the strike of the southern margin faults, and we argue that this effect is best explained if fault linkage has led to an increase in slip rate on the faults through time from  0.1 to 0.45 mm/yr. By measuring the average length of the original fault segments, we estimate the slip rate enhancement along the faults, and thus calculate the range of times for which fault acceleration could have occurred, given geological estimates of fault throw. These values are compared with the times and slip rates required to grow the documented long-profile convexities enabling us to quantify both the present-day slip rate on the fault (0.45 ± 0.05 mm/yr) and the timing of fault acceleration (1.4 ± 0.2 Ma). Our results have substantial implications for predicting earthquake hazard in this densely populated area (calculated potential Mw = 6.0–6.6), enable us to constrain the tectonic evolution of the graben through time, and more widely, demonstrate that geomorphic analysis can be used as an effective tool for estimating fault slip rates over time periods > 106 years, even in the absence of direct geodetic constraints.  相似文献   

2.
We present detailed data on channel morphology, valley width and grain size for three bedrock rivers crossing active normal faults which differ in their rate, history and spatial distribution of uplift. We evaluate the extent to which downstream changes in unit stream power correlate with footwall uplift, and use this information to identify which of the channels are likely to be undergoing a transient response to tectonics, and hence clarify the key geomorphic features associated with this signal. We demonstrate that rivers responding transiently to fault slip-rate increase are characterised by significant long-profile convexities (over-steepened reaches), a loss of hydraulic scaling, channel aspect ratios which are a strong non-linear function of slope, narrow valley widths, elevated coarse-fraction grain-sizes and reduced downstream variability in channel planform geometry. We are also able to quantify the steady-state configurations of channels, that have adjusted to differing spatial uplift fields. The results challenge the application of steady-state paradigms to transient settings and show that assumptions of power-law width scaling are inappropriate for rivers, that have not reached topographic steady state, whatever exponent is used. We also evaluate the likely evolution of bedrock channels responding transiently to fault acceleration and show that the headwaters are vulnerable to beheading if the rate of over-steepened reach migration is low. We estimate that in this setting the response timescale to eliminate long-profile convexity for these channels is ∼1 Myr, and that typical hydraulic scaling is regained within 3 Myr.  相似文献   

3.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

4.
Remnants of a high plateau have been identified on Nuussuaq and Disko, central West Greenland. We interpret the plateau as an erosion surface (the summit erosion surface) formed mainly by a fluvial system and graded close to its former base level and subsequently uplifted to its present elevation. It extends over 150 km east–west, being of low relative relief, broken along faults, tilted westwards in the west and eastwards in the east, and having a maximum elevation of ca. 2 km in central Nuussuaq and Disko. The summit erosion surface cuts across Precambrian basement rocks and Paleocene–Eocene lavas, constraining its age to being substantially younger than the last rift event in the Nuussuaq Basin, which took place during the late Maastrichtian and Danian. The geological record shows that the Nuussuaq Basin was subjected to subsidence of several kilometres during Paleocene–Eocene volcanism and was transgressed by the sea later during the Eocene. By comparing with results from apatite fission track analysis and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and 10 Ma and caused valley incision. This generation of valleys graded to the new base level and formed a lower erosion surface, at most 1 km below the summit erosion surface, thus indicating the magnitude of its uplift. Formation of this generation of valleys was interrupted by a third uplift event also with a magnitude of 1 km that lifted the landscape to near its present position. Correlation with the fission-track record suggests that this uplift event started between 7 and 2 Ma. Uplift must have been caused initially by tectonism. Isostatic compensation due to erosion and loading and unloading of ice sheets has added to the magnitude of uplift but have not significantly altered the configuration of the surface. It is concluded that the elevations of palaeosurfaces (surfaces not in accordance with present climate or tectonic conditions) on West Greenland's passive margin can be used to define the magnitude and lateral variations of Neogene uplift events. The striking similarity between the landforms in West Greenland and those on many other passive margins is also noted.  相似文献   

5.
Jean-Pierre Larue   《Geomorphology》2008,93(3-4):398-420
This work examines the links between tectonics and fluvial dynamics on the north-western margin of the French Central Massif. Geomorphological and sedimentological analyses of detrital deposits were carried out as the basis for correlating the different formations, and for reconstructing the palaeodrainage in the Creuse basin. Cross-sections of the valleys, longitudinal profiles of terraces and glacis indicate post-depositional deformation of about 50 m amplitude: uplift north and south of Guéret and in the Éguzon district. These deformations are related to the Central Massif uplift of 50 m above the Paris Basin since 1.1 Ma (OIS 32). The Creuse incision varies from 140 m in the Crozant anticline to 60 m in the Paris Basin. An Upper Pliocene palaeochannel located on the Sédelle–Ardentes–Issoudun lineament is evidenced by andalusite coming from the Fougères unit. The reactivation of the transverse faults between Le Pin and Le Menoux has distorted the middle terraces. The main knick points are mainly due to tectonics and have been persistent in the landscape since the Upper Pliocene. Their recession rate is controlled both by discharge and lithology. Tributary streams exhibit strong convexities, indicating that the erosional response to Pliocene uplift has not yet propagated into upland surfaces.  相似文献   

6.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

7.
Jean-Pierre Larue   《Geomorphology》2008,93(3-4):343-367
The analysis of longitudinal profiles of river channels and terraces in the southern Central Massif border, between the Aude and the Orb, allows the detection of anomalies caused by lithology and/or tectonic distortions. The rivers which have abnormally high slope and non-lithological knickzones indicate the main uplifted zones: the Montagne Noire and the Saint-Chinian ridge. A geomorphological and sedimentological analysis of detrital deposits was carried out as a basis for correlating the different formations, reconstructing the palaeodrainage and finding the main uplift and fluvial incision stages. During the Miocene, uplift remains limited as it is shown by the correlative fine deposits in the Languedocian piedmont. The Messinian incision (5.7–5.3 Ma) does not cross the Saint-Chinian ridge. On the other hand, fluvial incision becomes widespread in the Montagne Noire during the Upper Pliocene (3.4–2 Ma) when coarse deposits overlie either the Pliocene clay in the Orb palaeovalley or the Messinian conglomerates at the Cesse outlet. An Upper Pliocene uplift of the Montagne Noire and of the Saint-Chinian ridge is the cause of this incision and also of the diversion of the Cesse towards the Aude. Where the uplift rate was higher than incision rate, knickzones have developed like in the Avant-Monts south-side. The knickzones of lithological origin maintain a strong vertical stability during all the river incision stages. On the other hand, those of tectonic origin or base level lowering record upstream migration and their rate of retreat is controlled by the river discharge. As incision occurs only during the cold/temperate transition periods during the Quaternary, upward erosion slowly migrates (15 km since the Upper Pliocene, on the Orb) and so does not reach the riverheads.  相似文献   

8.
《Basin Research》2018,30(Z1):186-209
We present new data addressing the evolution, activity and geomorphic impact of three normal faults in the Southern Apennines: the Vallo di Diano, East Agri and Monti della Maddalena faults. We show that these faults have minimum total throws of ca. 1000–2000 m, and throw rates of ca. 0.7–1 mm year−1 for at least the last ca. 18 ka. We demonstrate that for the Vallo di Diano and East Agri faults, the landscape is effectively recording tectonics, with relief, channel and catchment slopes varying along fault strike in the same manner as normal fault activity does, with little apparent influence of lithology. We therefore use these data to reconstruct the time‐integrated history of fault interaction and growth. From the distribution of knickpoints on the footwall channels, we infer two episodes of base level change, which we attribute to fault interaction episodes. We reconstruct the amount of throw accumulated after each of these events, and the segments involved in each, from the fault throw profiles, and use fault interaction theory to estimate the magnitude of the perturbations and past throw rates. We estimate that fault linkage events took place 0.7 ± 0.2 Ma and 1.4 ± 0.3 Ma in the Vallo di Diano fault, and 1 ± 0.1 in the East Agri Fault, and that both faults likely started their activity between 3 and 3.5 Ma. These fault linkage scenarios are consistent with the observed knickpoint heights. This method for reconstructing fault evolution could potentially be applied for any normal faults for which there is information about throw and throw rates, and in which channels are transiently responding to tectonics.  相似文献   

9.
Nicola J. Litchfield   《Geomorphology》2008,99(1-4):369-386
In order to make robust predictions of future coastal processes and hazards, historical rates of coastal processes such as coastal erosion need to be put into a long-term (Holocene) context. In this study a methodology is proposed that uses fluvial terraces to construct longitudinal profiles which can be projected offshore to infer paleo-coastline positions. From these positions, an average Holocene coastal erosion rate can be calculated. This study also shows how constraints can be placed on sea level changes and Late Pleistocene uplift rates using fluvial terraces, and by assuming the latter has been constant since  55–37 ka, these constraints feedback into the coastal erosion rate calculations. For the northwestern Hawke Bay (North Island, New Zealand) coastline, Late Pleistocene uplift rates of 0.6 ± 0.2, 0.6 ± 0.2, and − 0.1 ± 0.1 (i.e., stable or subsiding) mm/yr have been determined for the Waikari, Mohaka, and Waihua River mouths, respectively. These rates are consistent with previous interpretations of subsidence to the northeast and uplift being the result of regional, subduction-related processes. A Holocene coastal erosion rate of 0.5 ± 0.1 m/yr was determined for the Waikari River mouth, which is at the higher end of the calculated historical ( 1880–1980) rates (0.02–0.5 m/yr). If this difference is significant, then two possible reasons for this difference are: (i) the historical rate is affected by events such as the 1931 Napier earthquake, and (ii) the Holocene rate is the average of a steadily declining rate over the last 7.3 ka.  相似文献   

10.
The Tyrrhenian coastal sector of North Calabria, stretching between Torre S. Nicola and the Lao river, belongs to the inner extensional sector of the Neogene Apennines thrust belt. It is characterised by a stair of Quaternary marine and fluvial terraces representing the geomorphic response to the interaction between the Quaternary sea level fluctuations and the regional trend of tectonic uplift experienced by the margins of the Tyrrhenian back-arc basin. Since the last century, several authors studied the North Calabria coasts, where the flight of terraces preserves significant marine and continental successions, and proposed several paleo-geomorphological and tectonic reconstructions. In this paper we present a new stratigraphic and morphostructural setting of the North Calabria coasts based on both chronostratigraphical constraints obtained from marine deposits and detailed geomorphological analysis. A ten order stair of marine terraces, stepping between 240 and 0 m a.s.l., was recognized and time-constrained by the age of the Fornaci S. Nicola marine succession which was ascribed by integrated paleoecological, biostratigraphical and paleomagentic analyses to the early Middle Pleistocene (MIS 19–15). In particular, the 240, 200 and 160 m a.s.l. high strandlines were ascribed to the Early Pleistocene and the ones between 100 and 15 m a.s.l. to the Middle Pleistocene. The total amount of the vertical motion experienced by the studied area was estimated, and evaluation of the average rates of uplift for the Middle and Late Pleistocene times were also given. Considering the elevation a.s.l. of the oldest terraces, a tectonic uplift of at least 240 m was calculated for the North Calabria coasts since the Early Pleistocene times, 100 m of which gained from the beginning of the Middle Pleistocene. On the other hand, the 8-m high Late Pleistocene strandlines display a negligible vertical displacement affecting the area during the last 130 ka. The entire staircase of terraces preserves a record of slowing down in the rate of uplift, which attained an average value of 0.15 mm/year during the Middle Pleistocene.  相似文献   

11.
T.C. Hales  J.J. Roering 《Geomorphology》2009,107(3-4):241-253
In the Southern Alps, New Zealand, large gradients in precipitation (< 1 to 12 m year− 1) and rock uplift (< 1 to 10 mm year− 1) produce distinct post-glacial geomorphic domains in which landslide-driven sediment production dominates in the wet, rapid-uplift western region, and rockfall controls erosion in the drier, low-uplift eastern region. Because the western region accounts for < 25% of the active orogen, the dynamics of erosion in the extensive eastern region are of equal importance in estimating the relative balance of uplift and erosion across the Southern Alps. Here, we assess the efficacy of frost cracking as the primary rockfall mechanism in the eastern Southern Alps using air photo and topographic analysis of scree slopes, cosmogenic radionuclide dating of headwalls, paleo-climate data, and a numerical model of headwall temperature. Currently, active scree slopes occur at a relatively uniform mean elevation ( 1450 m) and their distribution is independent of hillslope aspect and rock type, consistent with the notion that frost cracking (which is maximized between − 3 and − 8 °C) may control rockfall erosion. Headwall erosion rates of 0.3 to 0.9 mm year− 1, measured using in-situ 10Be and 26Al in the Cragieburn Range, confirm that rockfall erosion is active in the late Holocene at rates that roughly balance rock uplift. Models of the predicted depth of frost activity are consistent with the scale of fractures and scree blocks in our field sites. Also, vegetated, paleo-scree slopes are ubiquitous at elevations lower than active scree slopes, consistent with the notion that lower temperatures during the last glacial advance induced pervasive rockfall erosion due to frost cracking. Our modeling suggests temporally-averaged peak frost cracking intensity occurs at 2300 m a.s.l., the approximate elevation of the highest peaks in the central Southern Alps, suggesting that the height of these peaks may be limited by a “frost buzzsaw.”  相似文献   

12.
High resolution topographic data along fault zones are important aids in the delineation of recently active breaks. A 15 km-long portion of the south-central San Andreas Fault (SAF) along the southern Cholame segment contains well preserved tectonic landforms such as benches, troughs, scarps, and aligned ridges that indicate recurring earthquake slip. Recently acquired LiDAR topographic data along the entire southern SAF (“B4” project) have shot densities of 3–4 m− 2. Computed from the LiDAR returns, Digital Elevation Models (DEMs) of 0.25 to 0.5 m resolution using local binning with inverse distance weighting and 0.8 m or larger search radii depict the tectonic landforms at paleoseismic sites well enough to assess them confidently. Mapping of recently active breaks using a LiDAR-only based approach compares well with aerial photographic and field based methods. The fault zone varies in width from meters to nearly 1 km and is comprised of numerous en echelon meter to kilometer-length overlapping sub parallel fault surfaces bounding differentially moving blocks that elongate parallel to the SAF. The semantic variations of what constitutes “active” and the importance of secondary traces influence the breadth and complexity of the resulting fault trace maps.  相似文献   

13.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

14.
K. Stüwe  J. Robl  S. Matthai 《Geomorphology》2009,108(3-4):200-208
A simple numerical landscape evolution model is used to investigate the rate of erosional decay of the Yucca Mountain crest in Nevada, USA — a location proposed as a permanent repository for high level radioactive waste. The model is based on a stream power approach in which we assume that the rate of erosion is proportional to the size of the catchment as a proxy for water flux and to the square of the topographic gradient. The proportionality constants in the model are determined using the structural history of the region: extensional tectonics has dissected the region into a series of well-defined tilt blocks in the last 11 my and the ratio of fault displacement and gully incision during this time is used to scale the model. Forward predictions of our model into the future show that the crest will denude to the level of the proposed site between 500,000 years and 5 my. This prediction is based on conservative estimates for all involved parameters. Erosion may be more rapid if other processes are involved. For example, our model does not consider continuing uplift or catastrophic surface processes as they have been recorded in the region. We conclude that any “total system performance analysis” (TSPA — as has been performed for the Yucca Mountain region to predict geological events inside the ridge) must consider erosion as an integral part of its predictions.  相似文献   

15.
Low-temperature apatite (U–Th)/He (AHe) thermochronology on vertical transects of leucogranite stocks and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating on strath terraces in the Lahul Himalaya provide a first approximation of long-term (104–106 years) exhumation rates for the High Himalayan Crystalline Series (HHCS) for northern India. The AHe ages show that exhumation of the HHCS in Lahul from shallow crustal levels to the surface was ~ 1–2 mm/a and occurred during the past ~ 2.5 Ma. Bedrock exhumation in Lahul fits into a regional pattern in the HHCS of low-temperature thermochronometers yielding Plio-Pleistocene ages. Surface exposure ages of strath terraces along the Chandra River range from ~ 3.5 to 0.2 ka. Two sites along the Chandra River show a correlation between TCN age and height above the river level yielding maximum incision rates of 12 and 5.5 mm/a. Comparison of our AHe and surface exposure ages from Lahul with thermochronometry data from the fastest uplifting region at the western end of the Himalaya, the Nanga Parbat syntaxis, illustrates that there are contrasting regions in the High Himalaya where longer term (105–107 years) erosion and exhumation of bedrock substantially differ even though Holocene rates of fluvial incision are comparable. These data imply that the orogen's indenting corners are regions where focused denudation has been stable since the mid-Pliocene. However, away from these localized areas where there is a potent coupling of tectonic and surface processes that produce rapid uplift and denudation, Plio-Pleistocene erosion and exhumation can be characterized by disequilibrium, where longer term rates are relatively slower and shorter term fluvial erosion is highly variable over time and distance. The surface exposure age data reflect differential incision along the length of the Chandra River over millennial time frames, illustrate the variances that are possible in Himalayan river incision, and highlight the complexity of Himalayan environments.  相似文献   

16.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   

17.
The “La Clapière” area (Tinée valley, Alpes Maritimes, France) is a typical large, complex, unstable rock slope affected by Deep Seated Gravitational Slope Deformations (DGSD) with tension cracks, scarps, and a 60 × 106 m3 rock slide at the slope foot that is currently active. The slope surface displacements since 10 ka were estimated from 10Be ages of slope gravitational features and from morpho-structural analyses. It appears that tensile cracks with a strike perpendicular to the main orientation of the slope were first triggered by the gravitational reactivation of pre-existing tectonic faults in the slope. A progressive shearing of the cracks then occurred until the failure of a large rock mass at the foot of the slope. By comparing apertures, variations and changes in direction between cracks of different ages, three phases of slope surface displacement were identified: 1) an initial slow slope deformation, spreading from the foot to the top, characterized by an average displacement rate of 4 mm yr− 1, from 10–5.6 ka BP; 2) an increase in the average displacement rate from 13 to 30 mm yr− 1 from the foot to the middle of the slope, until 3.6 ka BP; and 3) development of a large failure at the foot of the slope with fast displacement rates exceeding 80 mm yr− 1 for the last 50 years. The main finding of this study is that such a large fractured slope destabilization had a very slow displacement rate for thousands of years but was followed by a recent acceleration. The results obtained agree with several previous studies, indicating that in-situ monitoring of creep of a fractured rock slope may be useful for predicting the time and place of a rapid failure.  相似文献   

18.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

19.
《Basin Research》2018,30(5):965-989
Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.  相似文献   

20.
Gully erosion is an important environmental hazard in the black soil region of northeastern China. It is a primary sediment source in the region which needs appropriate soil conservation practices. Gully incision in rolling hills typical of this region was monitored using real-time kinematic GPS to assess the rates of gully development and the resultant sediment production. From 2002 to 2005, gully heads in the study area retreated between 15.4 and 33.5 m, giving an average retreat rate of 8.4 m yr− 1. Field measurements showed that total sediment production due to gully erosion during the three years ranged between 257 and 1854 m3 yr− 1, which is equivalent to 326 to 2355 t yr− 1, with gully-head retreat accounting for 0 to 21.7% (4.4% in average). The sediment delivery ratio was especially high during the summer rainy season (56% in average). Sediment production by ephemeral gullies and permanent gullies was 1.5 times greater than that from surface erosion. Gully heads retreated faster in the spring freeze–thaw period than in the summer. The stage of gully development could be identified based on short-term changes in the gully erosion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号