首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The results are presented of an extensive programme of optical and infrared imaging of radio sources in a complete subsample of the Leiden–Berkeley Deep Survey. The LBDS Hercules sample consists of 72 sources observed at 1.4 GHz, with flux densities S 1.41.0 mJy, in a 1.2 deg2 region of Hercules. This sample is almost completely identified in the g , r , i and K bands, with some additional data available at J and H . The magnitude distributions peak at r ≃22 mag, K ≃16 mag and extend down to r ≃26 mag, K ≃21 mag. The K -band magnitude distributions for the radio galaxies and quasars are compared with those of other radio surveys. At S 1.4 GHz≲1 Jy, the K -band distribution does not change significantly with radio flux density. The sources span a broad range of colours, with several being extremely red ( r − K ≳6). Though small, this is the most optically complete sample of mJy radio sources available at 1.4 GHz, and is ideally suited for studying the evolution of the radio luminosity function out to high redshifts.  相似文献   

11.
12.
With the goal of identifying high-redshift radio galaxies with Fanaroff–Riley class I (FR I) classification, here are presented high-resolution, wide-field radio observations, near-infrared and optical imaging and multi-object spectroscopy of two fields of the Leiden–Berkeley Deep Survey. These fields, Hercules.1 and Lynx.2, contain a complete sample of 81 radio sources with   S 1.4 GHz > 0.5 mJy  within 0.6 deg2. This sample will form the basis for a study of the population and cosmic evolution of high-redshift, low-power, FR I radio sources which will be presented in Paper II. Currently, the host galaxy identification fraction is 86 per cent with 11 sources remaining unidentified at a level of   r '≥ 25.2 mag  (Hercules; four sources) or   r '≥ 24.4 mag  (Lynx; seven sources) or   K ≳ 20 mag  . Spectroscopic redshifts have been determined for 49 per cent of the sample and photometric redshift estimates are presented for the remainder of the sample.  相似文献   

13.
14.
15.
We have observed a small sample of powerful double radio sources (radio galaxies and quasars) at frequencies around 90 GHz with the Berkeley Illinois Maryland Association (BIMA) millimetre array, with the intention of constraining the resolved high-frequency spectra of radio galaxies. When combined with other sources we have previously observed and with data from the BIMA archive, these observations allow us for the first time to make general statements about the high-frequency behaviour of compact components of radio galaxies – cores, jets and hotspots. We find that cores in our sample remain flat-spectrum up to 90 GHz; jets in some of our targets are detected at 90 GHz for the first time in our new observations and hotspots are found to be almost universal, but show a wide range of spectral properties. Emission from the extended lobes of radio galaxies is detected in a few cases and shows rough consistency with the expectations from standard spectral ageing models, though our ability to probe this in detail is limited by the sensitivity of BIMA. We briefly discuss the prospects for radio galaxy astrophysics with Atacama Large Millimeter Array.  相似文献   

16.
We have cross-matched the 1.4-GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 deg2 (about 20 per cent of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio identifications – the largest and most homogeneous set of radio source spectra ever obtained. The 2dFGRS radio sources span the redshift range     to 0.438, and are a mixture of active galaxies (60 per cent) and star-forming galaxies (40 per cent). About 25 per cent of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We make a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star formation density of         .  相似文献   

17.
18.
19.
20.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号