首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
中国夏季和冬季极端干旱年代际变化及成因分析   总被引:4,自引:0,他引:4  
刘珂  姜大膀 《大气科学》2014,38(2):309-321
依据1961~2009年中国区域540个气象站的夏、冬季气温和降水数据,首先采用气候变化趋势转折判别模型(简称PLFIM)分析了中国区域8个分区夏、冬季气温和降水的年代际变化,而后利用PDSI干旱指数研究了夏、冬季极端干旱在年代际尺度上的时空变化特征及其成因。结果表明:1961~2009年中国夏季极端干旱发生率北方大于南方,冬季则为在东部多而在西部少。夏季和冬季极端干旱发生概率在最后一次年代际转折后都呈增加趋势。在区域尺度上,夏季东北、华北和西北地区增加明显,冬季东北、华北、华南、西南地区增加显著。其中,降水在20世纪90年代以前的极端干旱变化中起主导作用,而后由于气候变暖所引起的极端干旱增加趋势逐渐增大,与降水变化的作用相互叠加。  相似文献   

2.
春夏东亚大气环流年代际转折的影响及其可能机理   总被引:2,自引:0,他引:2  
本文通过多变量联合经验正交分解(MV-EOF)方法揭示了近30年(1979~2010年) 春季和夏季东亚大气环流所发生的年代际转折及其与中国南方降水年代际季节反相变化的内在联系,探讨了局地性大气热源年代际变化影响东亚大气环流年代际转折的可能机理.结果表明:(1)东亚大气环流春季第一模态和夏季第二模态在90年代中期都发生了明显的年代际转折;(2)与春季大气环流第一模态和夏季大气环流第二模态年代际转折相对应的是中国南方降水明显的年代际季节反相变化,即春季降水年代际减少,夏季降水年代际增多;(3)春季青藏高原和夏季贝加尔湖地区大气热源年代际变化对东亚大气环流年代际转折有一定贡献,是造成中国南方降水年代际季节反相变化的直接原因;(4)春季青藏高原大气热源的年代际减弱,使得高原东南侧的西南风减弱,导致中国南方上空水汽输送不足,春季降水减少.夏季贝加尔湖大气热源偶极型分布由“南负北正”转变为“南正北负”,由此在贝湖上空激发高压异常,使得夏季雨带北进受阻而停滞南方,造成中国南方夏季降水增多.  相似文献   

3.
我国东部夏季极端降水与北太平洋海温的遥相关研究   总被引:12,自引:2,他引:12  
采用1951—1998年我国东部(105°E以东)59个站点夏季大雨及以上降水量资料与北太平洋海温场资料,借助于SVD分析方法,逐季分析我国东部极端降水与北太平洋海温及南方涛动指数的遥相关,进而检测影响我国东部地区极端降水空间分布的海温关键区和南方涛动及其显著季节(月份)。结果表明,我国东部夏季极端降水与同期太平洋SST的遥相关主要在太平洋130~170°E,5~25°N之间海域;Ni-no区域SST与次年夏季极端降水的相关主要表现在与华东地区的正相关;黑潮海域及加利福尼亚海流区春季SST与我国东部夏季极端降水呈明显的负相关;冬季太平洋SST与我国东部夏季极端降水的遥相关主要表现在,赤道东太平洋、黑潮海域的冬季海温与华东地区、河套地区降水的正相关;我国东部夏季极端降水与前一年秋季Nino区海温为负相关,与西太平洋海温为正相关。  相似文献   

4.
青藏高原中东部夏季极端降水年代际变化特征   总被引:3,自引:2,他引:1  
曹瑜  游庆龙  马茜蓉 《气象科学》2019,39(4):437-445
基于中国国家级地面气象站基本气象要素日值数据集得到的均一化降水序列,计算了夏季极端降水指数,分析青藏高原中东部1961—2014年夏季极端降水年代际变化趋势。结果表明:青藏高原中东部地区夏季降水量占全年总降水的50%以上,且夏季降水的变化趋势存在区域性差异,北部站点主要为增加趋势,南部增加和减少趋势的站点相当。夏季极端降水除西藏东部主要为减少趋势外,其他地区主要为增加趋势,且极强降水量的年代际变化趋势显著。大部分夏季极端降水指数的变化趋势在1970s发生转折,在此之前表现为减少的趋势,之后为增加趋势。通过Mann-Kendall趋势检验,在2000年之后强降水量和极强降水量出现突变。  相似文献   

5.
西北区东部夏季极端降水事件同太平洋SSTA的遥相关   总被引:9,自引:1,他引:9  
利用近50年月平均NCEP再分析高度场、风场、NOAA重构海表温度以及中国西北区东部38个台站逐日降水资料,运用SVD及合成分析等方法,研究了太平洋SSTA对我国西北区东部夏季极端降水事件的可能影响。结果表明,冬季太平洋海表温度对后期西北区东部夏季极端降水事件的影响最显著,并且赤道中东太平洋是影响西北区东部夏季极端降水事件的关键区,当赤道中东太平洋海表温度发生异常时,首先引起纬向和经向垂直环流圈发生异常,进而强迫大气环流发生调整,先后通过PNA和WP遥相关使得西太平洋副热带高压发生异常,最终使得西北区东部夏季极端降水事件发生异常。  相似文献   

6.
指出了中国东部夏季气候在20世纪80年代末出现了一次明显的年代际气候转型.伴随着这次年代际转型,80年代末以后中国东部南方地区降水明显增多,500 hPa西太平洋副热带高压西伸且南北范围变大,西北太平洋上空850 hPa反气旋增强.中国东部夏季80年代后期出现南方多雨的年代际转型与欧亚大陆春季积雪、西北太平洋夏季海面温度的年代际变化存在密切联系,它们也都在80年代末出现年代际转型.从80年代末以后,伴随着欧亚大陆春季积雪明显减少和西北太平洋夏季海面温度明显增高,中国夏季南方降水明显增加.文中分析了欧亚大陆春季积雪和西北太平洋夏季海面温度影响中国降水的物理过程,指出欧亚大陆春季积雪能够在500 hPa激发出大气中的遥相关波列,所激发出的波列可以从春季一直持续到夏季,造成中国北方为高压控制,南方为微弱低压控制,使得降水出现在中国南方.西北太平洋夏季海面温度的升高能够减小海陆热力差异,使得夏季风减弱,导致中国南方地区降水增多.  相似文献   

7.
RSM模式对中国东部夏季降水模拟能力的检验   总被引:4,自引:4,他引:0  
宗培书  周晶 《气象科学》2017,37(1):101-109
本文利用美国国家环境预报中心NCEP(National Centers for Environmental Prediction)区域谱模式RSM(Regional Spectral Model)对中国东部地区夏季降水进行了为期20 a(1984—2003年)、水平分辨率为30 km的高精度模拟,并对模拟所得降水的气候态、年际变率、逐日变化以及极端事件进行了检验,和对造成降水偏差的大气环流特征进行了分析。结果表明RSM模拟所得夏季降水的空间分布、时间变率,以及降水量值都与实况相近,也基本可以再现夏季降水的年际变率分布情况,但是模拟所得的雨带存在偏南且偏弱的特点。对于逐日降水特征,RSM模拟所得季节内逐日降水变化与实况的走势基本一致,再现了夏季降水主要集中于东部和南部的特点,模拟出了江淮地区6月日降水区随时间北抬的特点。对于极端事件,模拟和实测的夏季不同雨强的天数分布对比表明模拟与实况基本接近,但是模拟的降水日大值中心较实况偏北;极端降水指数的计算结果也表明RSM模拟的极端降水情况与实况基本一致。综上,RSM模式对中国东部地区降水有着较好的模拟能力,可以用于中国东部地区的夏季降水气候特征研究。  相似文献   

8.
海表温度和地表温度与中国东部夏季异常降水   总被引:18,自引:2,他引:16  
主要研究太平洋与印度洋海表温度和地表温度场与中国东部夏季降水的相关关系,以及异常大降水产生的下垫面条件.研究结果表明:(1)夏季黑潮区海温与同期长江流域的降水存在明显正相关,北方地区夏季降水与靠近非洲东岸的印度洋海域存在明显负相关.(2)夏季海温异常与同期中国降水异常场之间的相关分析(SVDI)表明,20世纪70年代后期当海温由La Nina多发期向El Nino多发期转变后,长江流域向异常多雨转变,而其北方和南方地区则向异常少雨方向发展.(3)中国东部区域降水与陆面温度的明显相关区有:(a)春,夏季热带非洲和夏季亚洲大陆部分地区地表温度与当年长江流域夏季降水存在显著正相关;(b)春季4、5月份部分亚洲大陆地表温度与当年华北地区夏季降水有明显负相关.(4)通过对比分析发现:长江(1954,1998和1999年)或江淮(1991年)流域几次特大异常降水的下垫面条件是黑潮区为海温正距平,同期欧亚大陆主要为正地表温度距平场.  相似文献   

9.
太平洋SSTA对中国东部夏季降水的影响Ⅰ--观测分析   总被引:10,自引:5,他引:5  
采用旋转经验正交函数(REOF)方法对1901~2000年中国东部43个站夏季降水资料进行分析,得到:华南、西南地区和长江中下游地区及华北北部、东北西南部地区是中国东部夏季降水异常三个最主要的区域,对三个主要模态对应的时间系数序列与太平洋SSTA作相关分析,结果表明影响东部夏季降水的关键海区是:前期冬季西北太平洋黑潮海区、前期春季赤道中东太平洋和同期北太平洋中纬中太平洋海区;并对关键海区SSTA与东部120个站夏季降水作SVD分析,进一步证实:这三个关键海区SSTA与东部夏季降水有显著的耦合相关关系。另外,对三个主要降水异常区的夏季降水异常的极端年份500hPa高度场进行合成分析,其结果为数值模拟分析提供依据。  相似文献   

10.
李湘瑞  范可  徐志清 《大气科学》2019,43(5):1109-1124
本文研究了1961~2016年中国北方东部地区夏季极端降水日数和极端降水贡献率的年代际变化特征,并进一步分析了该地区极端降水和普通降水的大气环流和水汽输送的差异。主要的研究结果表明:1961~2016年中国北方东部地区夏季极端降水日数和极端降水贡献率在2000年前后发生显著年代际变化,2000年后夏季极端降水天数和极端降水贡献率显著减少。与1984~1999年相比,2000~2016年在对流层高层从欧洲大陆、中亚到东北—蒙古地区,位势高度异常呈现出“正—负—正”的大气波列,从而造成北方东部地区上空为正压的位势高度正异常控制,伴随着下沉运动,大气层结趋于稳定,这些环流条件不利于极端降水发生。2000年后负位相的太平洋年代际振荡(PDO)和正位相的北大西洋多年代际振荡(AMO)共同加强了北方东部地区上空的正位势高度异常。进一步研究表明,极端降水与普通降水的水汽输送和收支以及关键的局地大气系统存在着显著差异,较普通降水而言,极端降水在南北向水汽输送和收支上更强;北方东部地区低空为较强的闭合低压控制,并不断受到高层高位涡空气下传的影响。  相似文献   

11.
亚洲夏季风的年际和年代际变化及其未来预测   总被引:31,自引:12,他引:19  
本文是对我们近五年在亚洲夏季风年代际与年际变率及其未来预测方面研究的一个综述.主要包括下列三个问题:(1)根据123年中国夏季降水资料和印度学者的分析,检测出亚洲夏季风具有明显的年代际尺度减弱,这种年代际变化使中国东部(包括东亚)和南亚夏季降水的格局在过去60年中发生了明显变化.在东亚,从1970年代后期开始,主要异常雨带有不断南移的趋势,结果造成了南涝北旱的降水分布,这主要受到60~80年年代际振荡的影响.青藏高原前冬和春季积雪的年代际减少与热带中东太平洋海表温度的年代际增加是东亚降水型改变的主要原因,这是通过减弱亚洲地区夏季海陆温差与夏季风强度而实现的.未来亚洲夏季风的预测表明,东亚夏季风和南亚夏季风对气候变暖有十分不同的响应.东亚夏季风在本世纪将增强,雨带北推,尤其在2040年代之后;而南亚夏季风环流将继续减弱.这种不同的变化是由于两者对高低层海陆热力差异的不同响应造成.(2)年际尺度的变率在亚洲夏季风区主要表现为2年与4~7年的振荡.本文着重分析了2年振荡(TBO)形成的过程、机理及其对东亚降水的影响.对TBO-海洋机理进行了具体的改进,说明了东亚夏季风降水深受TBO影响的原因,尤其是阐明了长江型(YRV) TBO和淮河型(HRV) TBO的特征及其形成的循环过程.(3)在总结亚洲夏季风时期遥相关型的基础上,本文提出了季节内和年际尺度的低空遥相关型:即西北太平洋季风的遥相关型与印度“南支”和“北支”遥相关型.它们基本上反映了沿低空夏季风强风速带Rossby波群速度传播的结果.据此可以根据西北太平洋和印度夏季风的变化分别预测中国梅雨和华北雨季来临和降水异常.最后研究还表明,在本世纪亚洲夏季风可能更显著地受到人类活动造成的全球变暖的影响,未来的亚洲夏季风活动是人类排放的CO2引起的全球变暖与自然变化(海洋和陆面过程(积雪))共同作用的结果.  相似文献   

12.
Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7– 10-years mode and 25–35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long-term predictability, which is a great challenge in climate research.  相似文献   

13.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   

14.
东亚夏季降水的异常与水汽输送的变异密切相关。基于1958—2016年资料,研究了夏季东亚季风区经向水汽输送的主要变异特征及其对东亚夏季极端降水的影响。经向水汽输送的第一主变异模态表现出中国东部和西北太平洋上的水汽经向输送呈现反向异常,以年际变化为主。当中国东部向北输送的水汽增强(减弱)而西北太平洋向北输送减弱(增强),则中国东部大范围的极端降水量及频次增加(减少)。该模态与西太(西太平洋)副高西伸(东撤)有关,并主要受到热带中东印度洋海温的影响。第二变异模态以年代际变化为主兼有年际变化,表现在1980年后中国东部及邻近海域上空的经向水汽输送减弱,使得环渤海地区和华南沿海的极端降水量及频次减少而长江上、下游和贵州的极端降水量及频次增加。该模态与西太副高的减弱有关,并受到热带西太海温年代际增温的影响。第三变异模态以年际变化为主兼有年代际变化,反映中国长江以北地区和日本南部及附近区域的经向水汽输送的反相变化结构。长江以北水汽输送减弱(增强),可导致华北、东北的极端降水量及频次减少(增加)和长江下游及江南地区的极端降水量及频次的减少(增加)。该模态主要受欧亚大陆上空中高纬度纬向遥相关波列和热带印太(印度洋太平洋)海温异常的影响。   相似文献   

15.
利用中国站点观测逐月降水和月平均气温资料以及NCEP/NCAR再分析资料,揭示了热带印度洋偶极子(IOD)与中国夏季气候异常关系的年代际变化.结果表明:IOD与中国夏季年际气候异常的关系既有稳定的一面,又存在着年代际变化.较为稳定的关系表现为:IOD与同年夏季长江黄河之间的降水变化存在显著负相关,与四川气温变化存在显著正相关;IOD与次年夏季四川降水存在显著正相关.伴随发生在20世纪70年代末的大尺度环流年代际转型,IOD与中国气候年际异常的联系亦发生变化:IOD正位相年的同年夏季降水异常型,由中国大部分地区偏少变为长江以南(北)偏多(少),气温由西南地区东部偏暖变为长江以南(北)偏冷(暖);次年夏季降水由全国大部分地区偏多变为长江以南(北)偏少(多),气温由全国大部分地区相关不显著变为黄河以南大部分地区显著偏暖.在IOD负位相年,中国夏季气候异常的特征与IOD正位相年相反.在20世纪70年代末的大尺度年代际气候转犁前后,与IOD相关的东亚大气环流异常特征明显不同.在IOD发展阶段,在70年代末以前,印度夏季风和南海季风偏强,副热带高压势力偏弱,导致中国华南大部分地区降水偏少,华北西部以及内蒙古中部等地降水偏多;70年代末以后,东亚大陆中纬度为弱的东风距平,导致新疆北部降水偏少,气温偏高,华南降水偏多.在IOD次年夏季,70年代末以前,华南、河套以及四川等地盛行偏南气流,降水偏多;70年代末以后,南亚高压和西太平洋副高偏西偏强,华南、江南降水偏少.  相似文献   

16.
The interdecadal change of the relationship between the tropical Indian Ocean dipole(IOD) mode and the summer climate anomaly in China is investigated by using monthly precipitation and temperature records at 210 stations in China and the NCEP/NCAR reanalysis data for 1957-2005.The results indicate that along with the interdecadal shift in the large-scale general circulation around the late 1970s,the relationship between the IOD mode and the summer climate anomaly in some regions of China has significantly changed.Before the late 1970s,a developing IOD event is associated with an enhanced East Asian summer monsoon,which tends to decrease summer precipitation and increase summer temperature in South China;while after the late 1970s,it is associated with a weakened East Asian summer monsoon,which tends to increase(decrease) precipitation and decrease(increase) temperature in the south(north) of the Yangtze River.During the next summer,following a positive IOD event,precipitation is increased in most of China before the late 1970s,while it is decreased(increased) south(north) of the Yangtze River after the late 1970s.There is no significant correlation between the IOD and surface air temperature anomaly in most of China in the next summer before the late 1970s;however,the IOD tends to increase the next summer temperature south of the Yellow River after the late 1970s.  相似文献   

17.
In this paper, it is pointed out that a notable decadal shift of, the summer climate in eastern China occurred in the late 1980s. In association with this decadal climate shift, after the late 1980s more precipitation appeared in the southern region of eastern China (namely South China), the western Pacific subtropical high stretched farther westward with a larger south-north extent, and a strengthened anticyclone at 850 hPa appeared in the northwestern Pacific. The decadal climate shift of the summer precipitation in South China was accompanied with decadal changes of the Eurasian snow cover in boreal spring and sea surface temperature (SST) in western North Pacific in boreal summer in the late 1980s. After the late 1980s, the spring Eurasian snow cover apparently became less and the summer SST in western North Pacific increased obviously, which were well correlated with the increase of the South China precipitation. The physical processes are also investigated on how the summer precipitation in China was affected by the spring Eurasian snow cover and summer SST in western North Pacific. The change of the spring Eurasian snow cover could excite a wave-train in higher latitudes, which lasted from spring to summer. Because of the wave-train, an abnormal high appeared over North China and a weak depression over South China, leading to more precipitation in South China. The increase of the summer SST in the western North Pacific reduced the land-sea thermal contrast and thus weakened the East Asian summer monsoon, also leading to more precipitation in South China.  相似文献   

18.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

19.
Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970's, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号