首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为提高初至拾取方法的准确性和自适应能力,将变异系数加权K均值聚类算法引入初至拾取中。首先提取均方根振幅、相邻道相关性、线积分、振幅谱主频等多种地震属性;然后针对地震属性进行加权K均值聚类,自动识别初至所在时窗;最后结合相位校正法,实现时窗内初至波起跳时间的拾取。在此基础上通过实际数据测试,并与长短时窗能量比法、反向传播神经网络方法对比,验证了本文方法的有效性与可行性。结果表明,基于加权K均值聚类的多属性初至拾取方法能较快速、准确地拾取低信噪比数据的初至,并且无需人为判断时窗,从而提高了拾取的自适应能力。   相似文献   

2.
基于Viterbi算法的复杂地质体速度约束化自动拾取   总被引:1,自引:0,他引:1  
对于复杂地质体而言,由于各种因素的影响,速度信息中往往会包含一些假的速度信息(如速度异常值).因此,如何在速度谱能量团(由所定义目标函数——相似系数法等得到)中拾取有效的叠加速度,是地震数据处理中一个重要的环节.本文,所引入的Viterbi算法具有约束化自动搜寻并获取最优解的功能,将其应用于速度的自动拾取中,它能向前做最大“能量团”的积分并向后递归计算最优解——叠加速度,是一种实现速度自动优化拾取的便利工具.  相似文献   

3.
针对影响微震初至拾取的资料信噪比过低的问题,传统方法的拾取精度与稳定性大多不太理想.为了克服低信噪比条件下初至无法有效拾取的缺点,本文设计了一种对目标成分具有高敏感性的自适应Morlet小波基,通过利用该小波基对微震记录进行小波分解,利用三分量数据的有效成分在小波域内具有特征相关性,对三分量小波系数进行主成分分析,提取主成分特征,最终对各级主成分进行加权重构,实现对低信噪比微震信号的初至拾取.在设计有不同信噪比的模型实验与实际资料应用中,该算法均表现出优异的抗噪性能.在极低信噪比条件下,仍能精确指示有效成分的初至.模型实验与实际资料处理结果均验证了本方法对极低信噪比微震资料的初至拾取处理上的有效性与实用性.本方法在微震监测等相关领域中具有较高的理论与应用价值.  相似文献   

4.
基于面向对象的无监督分类的遥感影像自动分类方法   总被引:3,自引:0,他引:3  
为了实现无任何先验知识的高分辨率遥感数据的自动分类,并进一步提高自动分类精度和效率,提出了一种基于面向对象的无监督分类方法(Object Oriented Unsupervised Classification).具体步骤如下:首先对遥感影像进行分割,得到一系列空间上相邻、同质性较好的分割单元,然后对分割单元进行特征提取,得到分割单元的对象特征(光谱特征、纹理特征等多特征信息),进而对分割单元进行基于对象特征马氏距离聚类.最后,通过分类后处理(类别合并、错分类别调整等)得到最终的分类结果.通过实验表明:本文提出的方法不仅能够利用影像中更多的特征信息进行聚类而且还可以有效地减少聚类对象的个数,从而使自动分类的精度和效率都得到较大的提升.  相似文献   

5.
露天矿采场边坡的微震信号具有振幅弱、噪声多、信噪比低的特征,基于经验小波变换(EWT)及Meyer自适应阈值提出分频降噪方法.首先,针对微震信号的频谱特征,设计一种频谱分割策略,将信号和噪声分解为不同的模态;其次,分析模态的频谱和能量,采用Meyer阈值函数自适应降噪,提高有效信号振幅;最后,借助阈值函数处理包含较少有用信号的模态,重构微震信号以保持其连续性,结果表明,降噪后微震信号信噪比(SNR)高、有效信息多,噪声少;通过多种方法对比,并用信噪比与均方根误差(RMSE)对本次降噪效果进行评价,本文方法较好的保留了微震信号有效信息,降噪效果显著.  相似文献   

6.
贺辉  胡丹  余先川 《地球物理学报》2016,59(6):1983-1993
遥感影像土地覆盖分类面临"类别密度差异显著"、"同谱异物"和"同物异谱"等不确定性问题,传统的分类方法(如FCM)因不能描述高阶模糊不确定性,无法完成准确建模,使分类误差较大,而二型模糊集恰是处理此类不确定性的有效工具.在引入二型模糊集新概念和自适应降型新方法的基础上,提出一种自适应二型模糊分类方法(A-IT2FCM):(1)基于样本集模糊距离度量构建面向分类的区间二型模糊集,以尽可能降低对先验知识和预设参数的依赖,从而满足自动分类的要求;(2)给出一种自适应探求等价一型代表(模糊)集合的高效降型方法,在此基础上进行自适应区间二型模糊聚类.实验数据为珠海横琴和北京颐和园的SPOT5影像数据,对比方法有A-IT2FCM、基于Karnik-Mendel算法降型和基于Tizhoosh提出的简易降型方法的区间二型模糊C均值聚类以及作者前期研究提出的区间值模糊C-均值算法(IV-FCM).实验结果表明,A-IT2FCM方法分类效果佳,在类别具有较大密度差异和多重模糊性时能得到比FCM及IV-FCM更精确的边界和更连贯的类别,适于处理遥感影像土地覆盖类别的深层不确定性;同时在"光谱混叠"现象严重时,可以获得比对比方法更稳健、精度更高的影像自动分类结果,且时间复杂度明显低于基于Karnik-Mendel方法.  相似文献   

7.
初至拾取是勘探地震资料处理中最基础的工作之一,现有的初至拾取方法日趋成熟.但当信号信噪比较低时,常规方法的拾取精度随之降低,因此一些适用于低信噪比数据的拾取方法被提出.其中应用较广泛的是基于时频分析的初至拾取方法,由于拾取过程涉及时频正变换和逆变换,效率较低,鉴于此,基于时频系数的叠加结果和时间域信号具有相同波形特征的特点,提出了一种在时频域直接开展初至拾取的方法,首先将数据转入时频域,然后采用自适应的噪声衰减方法进行噪声压制,最后在时频域直接拾取初至.模拟和实际数据的拾取结果证实,该方法在低信噪比的环境下,可以获得高于常规方法的拾取精度,并且比基于小波变换的其他方法更节省计算成本.  相似文献   

8.
砂土地震液化问题是岩土地震工程学的重要研究课题之一。在分析模糊神经网络原理的基础上,利用减法聚类算法对自适应模糊推理系统进行优化,并建立了砂土地震液化的模糊神经网络模型。然后,将该模型用于实际工程的砂土液化判别中,并与传统砂土液化判别方法结果进行对比。判别结果表明:文中建立的模糊神经网络模型具有较强的学习功能,用于砂土地震液化判别中是可行的和有效的。  相似文献   

9.
高效准确地拾取初至是获得良好初至波走时层析结果的前提.目前应用广泛的是传统能量比法拾取初至,这种方法是基于获得较准的初至起跳时间.但由于理论缺陷,能量比法拾取的起跳时间并非真实的初至起跳时间.基于聚类连接算法的地震DNA算法是目前比较新颖的层位自动提取方法,尝试将地震DNA算法用于准确地拾取初至,这种初至拾取方法无需获得初至起跳时间,弥补了能量比法的理论缺陷.首先将地震记录从数值空间转换至字符空间,设置符合初至特征的搜索因子在字符空间逐道进行初至拾取,此时所拾取初至为字符类型,使用欧式距离连接聚类好的字符初至使其具有更好的连续性和准确性,然后将字符类型初至转换到数值空间进行初至走时的显示及其计算.对简单数据模型和实际资料分别用传统能量比法与新方法进行初至拾取效果对比,对实际资料的单炮记录分别使用能量比法,互相关法,自拾取算法以及人工干预的自拾取算法进行初至拾取效果对比,拾取初至特征值对比结果说明采用地震DNA算法拾取初至的方法避免了误拾取现象且拾取效果更加连续.对所拾取的初至特征值进一步处理计算走时,将计算得到的初至走时应用于二维初至波走时层析中,层析反演结果表明,这种新的初至拾取方法...  相似文献   

10.

同时震源数据包含了多炮之间的串扰噪声,不能直接用于常规数据处理流程.因此,需要对混叠的波场进行分离得到常规采集的单炮记录.本文基于稀疏迭代反演分离,提出了一种具有尺度与空间自适应的Wiener阈值选取方法.该阈值选取方法能够根据不同迭代环境计算不同尺度下串扰噪声的方差和不同空间位置有效信号的方差,从而自适应调整阈值大小,最终通过对变换域系数进行收缩来达到去除串扰噪声的目的.理论模型数据和实际数据测试结果表明,本文方法能够快速有效地压制串扰噪声和保护弱有效信号,取得了比Contourlet域子带一致Wiener阈值方法和Curvelet域指数衰减阈值方法更好的分离效果.

  相似文献   

11.
在常规的地震数据处理工作流程中,人工拾取地震速度谱中的叠加速度存在耗时长、效率低的问题,且容易受到人为经验的影响.本文基于目标检测的方法,应用改进后的FCOS(Fully Convolutional One-Stage Object Detection)神经网络模型实现速度谱中叠加速度的自动拾取.该方法将速度谱图像作为输入,经模型训练后输出"时间-速度"对序列.在处理低信噪比工区数据时,针对速度谱能量团聚焦特征较差的特点加入基于深度神经网络(Deep Neural Network,DNN)的线性回归模型以拟合出全局速度曲线.Marmousi模型数据和实际工区数据测试结果表明,本文所设计的地震速度谱自动拾取模型准确性较高、鲁棒性强,有效地缓解了人工拾取的负担,在保证速度拾取精度的同时显著地提高了效率.  相似文献   

12.
郑升  马海涛  李月 《地球物理学报》2019,62(10):4020-4027

随着陆地地震勘探工作的加深,勘探环境变得越来越复杂,获得的地震信号信噪比越来越低,这给地震成像和数据解释带来了巨大的困难.为了解决这一技术难题,本文针对云南山地金属矿区的勘探环境提出了一种基于自适应阈值递归循环平移的Shearlet变换去噪算法(Recursive Cycle Spinning Shearlet Transform,RCSST).首次将递归循环平移与Shearlet变换相结合,利用Shearlet变换的多尺度多方向特性对平移后的地震资料进行分解变换,之后,我们又提出了一种全新的自适应阈值,避免了信号系数被过度扼杀,同时也保护了有效信号.实验表明基于自适应阈值的RCSST算法克服了传统Shearlet变换去噪算法在低信噪比下易出现假轴的弊端并且能够有效地保护信号的幅度.在处理较低信噪比的模拟和实际云南山地地区地震资料的过程中,本文方法能够较好的压制随机噪声和保护有效信号.

  相似文献   

13.

为了降低强电磁干扰对人工源电磁法(Controlled Source Electromagnetic Method, CSEM)有效信号的影响, 改善CSEM实测数据处理结果因人而异且效率低的不足, 本文针对CSEM有效信号周期性特征提出了一种加权自适应带宽均值漂移聚类(Weighted Adaptive Bandwidth Mean-Shift Clustering, WAB-MSC)信噪分离方法.首先在传统均值漂移聚类(Mean-Shift Clustering, MSC)算法的基础上增加核函数, 降低处理结果对带宽选择的敏感度, 提高算法的稳健性; 其次结合实测CSEM数据的分布特征提出了一种基于局部密度梯度的带宽估计方法, 实现了自适应带宽选择; 最后通过仿真数据与实测数据对本文方法进行了验证, 结果表明: 本文方法能有效消除强电磁干扰对CSEM数据的影响, 最大程度保留受噪声影响较小或未受噪声影响的数据, 提高数据信噪比, 降低强干扰噪声对CSEM初始资料的影响程度, 获得更为真实的地电响应模型, 为后续数据处理提供保障.

  相似文献   

14.
基于深度卷积神经网络的地震震相拾取方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文

地震震相拾取是地震数据自动处理的首要环节,包括了信号检测、到时估计和震相识别等过程,震相拾取的准确性直接影响到后续事件关联处理的性能,影响观测报告的质量.为了提高震相拾取的准确性,进而提高观测报告质量,本文采用深度卷积神经网络方法来解决震相拾取问题,构建了多任务卷积神经网络模型,设计了分类和回归的联合损失函数,定义了基于加权的分类损失函数,以三分量地震台站的波形数据作为输入,同时实现对震相的检测识别和到时的精确估计.利用美国南加州地震台网的200万条震相和噪声数据对模型进行训练、验证和测试,对于测试集中直达波P、S震相识别的查全率达到98%以上,到时估计的标准偏差分别为0.067 s,0.082 s.利用迁移学习和数据增强,将模型用于对我国东北地区台网的6个台站13000条数据的训练、验证和测试中,对该数据集P、S震相查全率分别达到91.21%、85.65%.基于迁移训练后的模型,设计了用于连续数据的震相拾取方法,利用连续的地震数据对该算法进行了实际应用测试,并与国家数据中心和中国地震局的观测报告进行比对,该方法的震相检测识别率平均可达84.5%,验证了该方法在实际应用中的有效性.本文所提出的方法展示了深度神经网络在地震震相拾取中的优异性能,为地震震相和事件的检测识别提供了新的思路.

  相似文献   

15.
在起伏地表构造条件下,共中心点反射已不复存在,其波场特征较为复杂,速度分析时受浅层动校畸变影响较大,加上其他干扰因素,利用常规处理手段已很难得到较为准确的近地表构造和起伏地表浅层的叠加速度.为此,设计了两个物理模型,利用地震物理模拟实验数据采集系统对模型进行了数据采集.在采集到的地震物理模拟数据的资料处理过程中,对单炮记录进行向上延拓,然后再进行速度分析,并在动校正后多次调整叠加速度来得到视叠加速度,从而避免了浅层动校畸变大的影响.物理模型的模拟实验及处理结果表明,向上延拓是解决近地表构造和起伏地表浅层叠加速度的有效手段,通过向上延拓处理可以得到较为准确的近地表构造的视叠加速度,利用这样的叠加速度成像,可以得到近地表构造和起伏地表浅层构造较为真实有效的信息.  相似文献   

16.

全波形反演可以为叠前深度偏移成像提供更高精度的速度模型,但该方法具有较强的非线性,对初始速度模型的依赖性较强,尤其是在实际应用中,地质条件复杂多变,速度变化不连续,增加了反演非线性程度,常常使反演陷入局部极小值,影响反演的精度.全变差约束在图像去噪领域应用广泛,属于非光滑约束,在去噪过程中能有效的保留图像的不连续界面和边缘信息.本文提出基于Hinge损失函数的垂向全变差约束全波形反演方法,在全变差约束的基础上,利用Hinge损失函数控制模型的更新方向,并使用原-对偶混合梯度算法进行求解,给出这一优化问题的迭代格式,有效提高了对地下不连续界面的重构精度,同时也降低反演对初始速度模型的依赖程度.数值算例证明:与常规全波形反演方法相比,基于全变差约束的全波形反演方法可以有效的重构速度模型中的不连续界面,尤其对高速体边缘的重构效果更明显,但该方法对初始速度模型的依赖性仍然较强;基于Hinge损失函数的垂向全变差约束全波形反演方法降低了对初始速度模型的依赖程度,可以从一个较差的初始模型通过循环迭代的方式最终得到同样精确的速度模型,较好的重构了高速体边缘和不连续界面.

  相似文献   

17.
Artificial Neural Network (ANN) model of computation based on mathematical model of neural processes is applied to establish an intelligent computing network from seismic intensity to peak ground parameter instead of the conventional statistical relationship in this paper. For a give seismic intensity rating, the network formed with actual strong ground motion records directly produces the corresponding peak ground parameters and the effects of earthquake magnitude and epicentral distance are included. The computed results of the network trained with a number of strong motion records in the West America show that such networks have obtained good conversion relationship from seismic intensity to peak ground parameters. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 208–216, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号