首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京7·21暴雨暖区中尺度对流系统的数值模拟   总被引:3,自引:3,他引:0  
王淑莉  康红文  谷湘潜  倪允琪 《气象》2015,41(5):544-553
许多业务模式对北京2012年7月21日特大暴雨的预报均是以锋面降水为主。在冷锋过境前,实际北京西南部强降水主要以暖区降水为主。本文利用30个成员的中尺度非静力数值模式(WRF),通过3次集合卡尔曼滤波(EnKF)同化地面和探空资料,对这次暴雨过程进行了集合数值模拟。通过对比分析模拟降水较好与较差成员发现,好的成员能够模拟出河北中西部及北京西南地区触发出的暖区中尺度对流系统(MCS)以及相对稳定的系统配置,使得MCS在北京上空充分发展,从而较好地模拟了这次特大暴雨过程中的暖区降水;而较差的成员则没能模拟出暖区降水过程,降水以锋面降水过程为主,并且雨带位置偏南、出现时间滞后。集合成员间模拟结果出现的较大差异,和初始场中低值系统位置的较大差异有直接关系,因此通过EnKF提高模式成员初始场的准确率,从而准确模拟后期主要影响系统的移动和发展,是成功模拟暖区对流系统触发和维持的关键所在。  相似文献   

2.
利用ECMWF、NCEP全球预报产品和BJ-RUC区域预报产品,对比了不同模式对北京市"7·21"特大暴雨暖区降水、锋面降水的预报效果,同时利用WRF高分辨率中尺度模式同化常规观测资料和雷达资料,对此次过程进行数值模拟试验。结果表明:NCEP和ECMWF的全球集合预报产品都能预报出北京市"7·21"特大暴雨过程,但在暖区降水阶段和锋面降水阶段存在6 h左右的时间滞后,且降水量偏小;BJ-RUC区域模式预报出了整个强降水过程,且较好地预报了暖区降水,优于NCEP和ECMWF预报,但锋面降水较之实况锋面阶段降水偏南,预报的降水量小于实况。对于此次特大暴雨过程的模拟,暖区降水和锋面降水的预报要优于业务预报,且暖区降水接近实况降水,但整个锋面降水过程存在3 h的时间滞后。  相似文献   

3.
近45年来河北省极端降水事件的变化研究   总被引:7,自引:1,他引:6  
高霞  王宏  于成文  戴新刚  史丽红 《气象》2009,35(7):10-15
利用河北省1961-2005年逐日降水资料,采用通用的极端气候指数,分析了近45年河北省极端降水事件频率变化的时空特征.结果表明,全省平均年最大日降水量呈下降趋势,1980年为由多向少的转折点;强降水日数和暴雨日数变化不大,但南部平原地区一般减少,北部山地区域多有增加,暴雨日数和强度在1990年代中后期显著增加;降水日数有较明显减少,南部和东南部平原减少更显著;降水日数的减少主要是中、小雨(雪)日数减少造成的.这些结果说明,河北省强降水日数和暴雨日数在降水日数中的比重有增大趋势,强降水量和暴雨降水量在总降水量中的比重可能增加了.这种相对增加趋势主要发生在1990年代中期以后.  相似文献   

4.
一次华南暴雨过程中不同区域降水特征的模拟分析   总被引:6,自引:5,他引:1  
通过对2005年6月19-20日的一次华南大暴雨过程的诊断分析表明,本次降水过程的水汽来源有两个,一是来自于印度洋上的印度季风,另一个是来自于澳大利亚的东南信风.对不同暴雨中心的分析表明,福建北部的降水带为华南准静止锋锋面上的系统性降水,假相当位温的经向垂直剖面呈明显的Ω型结构,而广东河源附近的暴雨中心为暖区对流性降水,低层为强的不稳定.利用ARPS模式对这次暴雨过程进行了数值模拟,结果表明,锋面雨带主要来自于网格降水的贡献,而对流性降水主要来自于次网尺度降水的贡献.  相似文献   

5.
锋前暖区暴雨的落区问题   总被引:2,自引:1,他引:2  
1995年6月16、17日两天,华南地区受锋面低槽影响,北部和沿海都出现了大~暴雨,其中北部为锋面降水,沿海则为锋前暖区降水。但这两天的锋前暖区降水,大~暴雨的落区差异很大;16日大~暴雨仅出现在粤西的漠阳江流域,17日则向东扩大到珠江口一带(图1)。本文利用天气图及其它资料,对暴雨落区不一的原因作一初步分析。1形势背景及气柱层结状况1.1大尺度形势从图2可以看出:这两天华南地区都受到静止锋低糟的影响,各主要系统的位置和强度几乎没有什么差异。在500hPa上,侨日北支槽线在成都~昆明,南支槽在黔东~老挝;副高脊在18”N…  相似文献   

6.
利用多普勒雷达资料、FY-2E静止卫星和MODIS极轨卫星反演产品,研究2012年7月21日北京特大暴雨的云降水结构及云雨转化特征。结果表明:降水过程三阶段的云降水垂直结构不同。1)在暖区对流降水阶段,降水以暖雨机制启动,雨滴在暖区存在深厚的碰并增长过程,暖雨过程对降水起主要贡献。随着云体的发展,冷雨过程加剧。T-Re分析表明,-10℃层以下云滴凝结碰并显著,-10℃层以上为深厚的冰相增长带,云顶以冰相大粒子为主,云水向雨水转化迅速。2)在锋面对流降水阶段,降水系统为高度组织化的"低质心"强降水液态MCC(Mesoscale Convective Complex)系统。回波强度在冰水混合层增长较快,冻结层是此阶段成雨微物理的关键层。降水粒子在暖云区碰并增长较快,而蒸发或破碎过程并不显著。3)在锋后降水阶段,0℃层附近冰晶粒子与云水的碰并增长较为明显。前期降水存在明显的雨滴蒸发过程。随着云体的发展,暖区云水含量较少,降水粒子不能有效碰并增长。  相似文献   

7.
2005年6月17~24日,华南地区发生了连续多日的暴雨天气过程,其显著特征是存在着南北两条雨带,北支雨带(福建中北部)由准静止的梅雨锋造成,南支雨带(广东中东部)发生在锋前暖区之中,这种连续多日共存的双雨带现象引起了气象学家的广泛关注.为了探究锋面和锋前暖区暴雨的成因,加深这两类不同性质暴雨的认识,利用NCEP每6 h一次的1°×1°经纬度再分析资料以及华南地区加密观测的逐小时地面降水等资料,以此次连续多日维持的双雨带降水过程为例,详细分析了锋面附近与锋前暖湿区内暴雨系统的主要物理差异.结果发现:梅雨锋暴雨和锋前暖区暴雨不仅在中尺度雨团活动、系统动力结构、大气不稳定机制和大气加热结构等存在明显的差异,而且在水汽输送、中尺度环境以及与暴雨有关的垂直环流之间也存在着不同点,这些差异可能是造成锋前暖区暴雨难以模拟和预报的主要原因.  相似文献   

8.
利用常规观测、加密站逐时的降水、NCEP/NCAR再分析资料和卫星资料,使用天气动力学诊断方法,分别分析了锋生及其次级环流对北京7.21暴雨过程中最大降水增幅和最大降水的影响。结果表明,北京地区的降水增幅和最大降水发生时刻并不一致。21日14时为北京最大降水增幅时刻,而次大降水增幅时刻的19时却为北京降水最大时刻。北京降水不论是增幅最大还是降水最大都与锋生处于北京的具体位置有关。21日14时,伴随着锋生函数正值区伸展到北京地区,其总锋生函数开始增大,此时高空急流导致的次级环流的上升支与冷锋前的上升支重合,使得地面锋前形成一深厚的上升运动,北京地区出现最大降水增幅;但在北京降水最大时刻,锋生函数大值中心移动到北京上空,其总锋生函数达到最大,在急流-锋系所产生的次级环流中,主要表现为在暖区一侧有强烈的上升运动,这和经典的急流-锋系所揭示的次级环流并不相同。同时,来自孟加拉湾从高原西侧经过河套地区到达北京的准"s"型异常水汽通道,则为北京7.21最大降水增幅时刻提供了良好的水汽条件。而北京最大降水时刻,南海水汽通道成为主要水汽来源,来自孟加拉湾的水汽输送则明显减弱。  相似文献   

9.
昌吉州大降水分析   总被引:1,自引:0,他引:1  
昌吉州位于天山北麓、准噶尔盆地南部和东南部,是自治区粮食产地之一.大降水,特别是区域性的大降水对农、牧业生产、经济建设和人民生活都有很大影响.例如:1984年6月21-23日,昌吉州东部出现了一场暴雨,木垒、奇台降水量27-50毫米,天池22日降雨120毫米.由暴雨形成的洪水冲毁渠道、农田、道路,造成巨大损失.但这场大范围的降水也使农作物得到了  相似文献   

10.
两次不同类型暖区暴雨的对比分析   总被引:1,自引:0,他引:1  
2014年5月8-12日,华南发生了连续暴雨天气过程,为了探究回流暖区暴雨和锋前暖区暴雨的成因,加深这两类不同类型暴雨的认识,利用NCEP/,NCAR的1°×1°再分析资料、多普勒天气雷达、风廓线仪、自动站资料等,分析了回流暴雨与锋前暖区暴雨的特征及主要物理差异。得出:(1)8日暴雨发生在变性高压脊后部,未受冷空气影响,属于回流型暖区暴雨过程,10-11日暴雨发生在锋面低槽中,属于锋前型暖区暴雨。(2)两种类型暴雨不仅降水的分布、中尺度云团活动、雷达特征等存在明显的差异,而且在天气形势、水汽输送、动力机制、中尺度环境条件以及与暴雨的触发机制存在着不同点,这些差异可能是造成两类暖区暴雨降水落区及量级差异的主要原因。  相似文献   

11.
使用常规观测资料、卫星云图、雷达回波资料、自动气象站降水量以及0.25°×0.25°的NCEP/NCAR再分析资料,对2017年8月1日发生在黑龙江南部的暖区暴雨过程的中尺度特征及成因进行了分析。结果表明:暴雨发生在副高加强西伸北抬及有台风活动的背景下,副高外围的水汽输送为暴雨提供了充沛的水汽条件;低层西南风的增大导致暖锋锋生,暖锋的辐合抬升作用加强,造成较大范围的暴雨天气;锋生区附近存在CSI,锋生作用及CSI的释放,加强了沿着锋面倾斜向上的斜升气流及锋面次级环流,CSI导致的斜升气流的发展进一步触发对流不稳定,导致大范围的垂直上升运动,降水显著加强;暖锋云带内部探空分析显示大气处于不稳定状态,有利于以短时强降水为主的对流发展。暴雨是由云团的后向传播造成的,强降水以暖云降水为主,降水效率高,雨强大,暖锋稳定少动,由暖锋锋生所致的对流单体在同一区域重复新生,并沿暖锋自西向东传播,形成列车效应,暴雨中心一直有最大反射率因子超过45 d Bz且降水效率高的强回波活动,持续时间超过4 h,导致强降水持续时间长,降水累积量大。  相似文献   

12.
辽宁地区暖区和锋面暴雨个例对比分析   总被引:1,自引:1,他引:0  
吴晓锋  王元  徐昕  吕童  聂安祺 《气象科学》2017,37(5):700-708
2013年7月1—2日,辽宁地区出现了持续时间较长的暴雨天气过程,此次过程可以分为3个阶段,其中包括两次暖区降水和一次冷锋锋面与暖区降水共存的过程,第一阶段的暖区降水和第三阶段的锋面降水形成了西北雨带,第二阶段的暖区降水形成了东南雨带。利用NCEP再分析资料、常规自动站观测资料、加密自动站观测资料和卫星资料,详细分析了此次过程中各阶段降水产生的机制以及锋面降水和暖区降水的主要物理差异。结果表明:暖区强降水主要出现在干线冷湿气团一侧或地面辐合线附近,并且由于暖区高温、高湿的特点,其产生的降水通常比锋面附近强,同时暖区降水与锋面降水在触发机制、中尺度环境条件、动力、热力结构等方面也存在着差异。  相似文献   

13.
该文利用常规探空资料、地面观测资料及NCEP1.0°×1.0°再分析资料,对2014年6月9日08时—10日08时(简称9日,下同)和6月26日08时—27日08时(简称26日,下同)贵州出现的两次暴雨过程进行对比分析,结果表明:①两次暴雨均集中分布在20时准静止锋附近及其偏南一侧,跨越纬度约1°,其分布与环流垂直结构有较好的对应关系。②9日暴雨落区主要集中在贵州西南部,呈团状分布,降水时段比较集中;26日暴雨落区位于贵州南部一线,呈不连续的带状分布,降水时段偏长;9日08时准静止锋位于滇东,26日08时准静止锋位于贵州东北部,结合两次暴雨落区与准静止锋位置变化,暴雨落区与滇黔准静止锋摆动有极大的关系。③9日暴雨的水汽主要来源于孟加拉湾西南气流;26日暴雨的水汽受孟加拉湾偏西气流和副高外围西南气流共同作用。9日暴雨位于反气旋底后部东南气流与偏西气流交汇处,26日暴雨发生在低涡前部偏西南气流与偏南气流的交汇处。④9日暴雨垂直上升运动大值中心位于贵州西南部,26日暴雨垂直上升运动大值中心分别位于贵州西南部和东南部,暴雨落区与垂直上升运动大值中心有较好的对应关系;9日暴雨在贵州西南部上空存在低层辐合—中高层辐散—高层辐合的配置,26日暴雨在贵州东南部上空存在低层辐合—中高层辐散—高层辐合的配置,高、低空抽吸作用对暴雨发生提供了有利条件。  相似文献   

14.
利用实况观测资料和NCEP再分析格点资料,对2011年10月12—14日广东一场全省范围的暴雨过程及水汽特征进行了分析。结果表明:(1)此次暴雨过程分为2个阶段,分别是12日夜间的暖区暴雨和13日夜间的锋面暴雨。(2)第1阶段降水主要由500 hPa西风短波槽配合850 hPa东南风辐合导致的,第2阶段降水是高层西风槽过境,配合地面冷空气前锋南下和低层的切变线共同作用所致。(3)降水发生前广东水汽充沛,湿层从低层往上伸展的厚度大,估计约有50%的降水量可由雨区本地的水汽所提供。(4)低层850 hPa或者925 hPa的东南风是暴雨发生的重要水汽输送通道,暴雨发生前南海热带系统的活跃是维持850 hPa和925 hPa东南风输送的重要原因。  相似文献   

15.
利用2012—2014年地面自动站与中国区域CMORPH(Climate Prediction Center Morphing)多卫星降水数据相融合的逐时降水量数据集,分析大别山区的降水时空分布特征。2012—2014年大别山区年平均降水量978.5mm,降水大值区出现在大别山主峰的东南侧,降水主要集中在5—7月,且呈现明显的地形降水特征。从时间变化情况看,降水量呈现单峰的特征,7月降水量最大。从空间分布情况看,大别山及其东部地区是强降水的频发区,出现暴雨日数最多的区域位于主峰及其东侧。降水中心表现出显著的季节变化特征,冬季降水中心位于大别山区的东南部,进入春季以后降水中心向西北方向移动,北抬至大别山主峰北侧,进入秋季(9月以后)以后降水中心逐渐向南回落。大别山区大气环流的季节性变化及其与地形的相互作用是造成大别山区出现明显地形降水(与降水随海拔先增加后减小)和降水季节性变化的主要原因。  相似文献   

16.
汪玲瑶  谌芸  肖天贵  李晟祺  葛蕾 《气象》2018,44(6):771-780
本文首先给出江南地区暖区暴雨的定义,并按天气形势将其分为暖切变型、冷锋锋前型、副热带高压(以下简称副高)型和强西南急流型四类。然后利用2010—2016年5—9月常规和自动站逐时降水等非常规观测资料统计暖区暴雨的时空分布特征和降水性质等,并对暖区暴雨的形成原因进行初步分析。最后利用NCEP FNL全球分析资料,基于中尺度分析技术给出四类暖区暴雨的系统配置:(1)四类暖区暴雨均为分散性局地降水,降水多发生于山区、平原和湖泊交界处等不均匀下垫面附近。其中,暖切变型降水范围广、强度最大、极端性最明显且主要位于江南中西部;冷锋锋前型降水集中、强度较大且具有一定极端性,主要位于江南中部;副高型降水强度较弱,主要位于江南中东部;强西南急流主要位于江南西部。(2)暖切变型和强西南急流型以夜间降水为主,副高型降水集中在午后,冷锋锋前型降水日变化不明显。(3)暖区暴雨由稳定性和对流性降水共同组成且降水量越大,降水对流性越明显。(4)在低层高湿、不稳定能量积聚等有利背景下,暖切变型、冷锋型和副高型暖区降水多由边界层(地面)中尺度辐合线配合高低空急流耦合产生,强西南急流型一般形成于低空急流上的中尺度风速脉动及地面辐合线附近,且低空急流越强,暴雨强度越大。(5)暖切变型和冷锋型暖区暴雨的落区分别位于低层850hPa暖切变以南和地面锋前的显著湿区内,副高型和强西南急流型的暴雨落区分别位于副高内和强低空急流出口区左前侧的水汽充沛且大气层结不稳定区内。四类暖区暴雨常表现为长生命史的移动型中尺度雨团途经山区或河流湖泊等不均匀下垫面时,强度增大、移速减慢,形成暖区局地强降水。  相似文献   

17.
北方一次暖区大暴雨降水预报失败案例剖析   总被引:3,自引:1,他引:2  
目前全球模式对暖区暴雨的捕捉能力有限,北方地区的暖区暴雨预报更是业务预报中的一个难点。2013年7月1—2日河北、天津等地出现了一次区域性大暴雨过程,降水由锋前暖区降水和锋面降水组成,特别是冀中的特大暴雨[409mm·(24h)~(-1)]暖区降水占60%以上。预报员对此次过程的预报量级显著偏小,特大暴雨、暴雨均出现漏报。各家数值模式预报均不能给预报员提供足够的有用信息,给预报带来很多困难,导致预报的失败。本文利用业务预报中常用的数值预报产品、加密自动站观测资料、常规地面、高空观测资料、新一代天气雷达资料等对此次北方暖区暴雨预报失败案例进行剖析,结果显示:高温高湿的环境中,未能捕捉到可触发对流的次天气及以下尺度的小扰动,如地面辐合线、阵风锋、冷池及中尺度涡旋等及其对强降水的影响,加之对中尺度对流系统的环境场条件,如低空急流、急流核的发展演变等的精细分析不足是导致强降水预报量级偏弱的重要因素;对于发生在深厚暖湿气团中的暖区降水的预报,需考虑高温高湿环境下地面辐合线、冷池及中尺度涡旋的相互作用对对流的触发及组织化发展导致的局地性、对流性强降水的产生;基于地面自动站资料和雷达资料等的短时临近预报可以弥补全球数值预报对中小尺度系统的捕捉能力的不足,提高暖区暴雨的预报准确率。  相似文献   

18.
2018年5月7日华南地区受锋面中尺度对流系统和暖区对流系统影响,出现多条中尺度雨带。其中锋面对流系统形成降雨区范围较广,雨量分布不均;在锋前30~200 km暖区内,多个离散的短生命史β中尺度对流系统形成范围较小的中尺度雨带;而在华南沿海地区中尺度线状对流长度超过300 km,稳定维持时间超过12 h,形成局地300 mm以上的沿海强降雨带。雷达回波分析表明华南地区的锋面对流系统、暖区对流系统均以低质心型对流单体为主,其中锋面对流单体35 dBz回波顶高平均为5.5 km,暖区对流系统35 dBz回波顶高平均为4.7 km。利用ERA5再分析资料诊断降水效率表明,锋面系统降水效率平均在10%~15%,暖区对流系统的降水效率波动明显,瞬时降水效率可超过90%。此次降雨过程中雨滴谱分析表明,小粒子直径、高雨滴数密度的暖云降水特征突出,沿海暖区对流系统在各个降水强度量级上都具有更大的粒子直径和数浓度,因此降水效率较高。预报检验表明主流业务数值模式对于暖区对流性降水预报能力有限,欧洲中心再预报改善了暖区对流性降水离散度分布,中尺度区域数值模式能够反映锋面对流和暖区对流的基本特征,但在沿海暖区对流系统的强度、组织上仍然有偏差。比较锋面降水和暖区降水的集合预报敏感性表明,锋面降水对于锋前低压槽、低空急流等天气系统强迫具有较高预报敏感性,而沿海暖区降水对于上游入流区不稳定能量分布具有更显著的敏感性。  相似文献   

19.
根据福建南部沿海气象站和水文站1961—2007年降水资料,分析其暴雨特征,应用概率论方法和水文气象法,推求福建南部沿海24 h可能最大降水。结果显示:①福建南部沿海的暴雨主要集中于春夏两季,冷暖空气交绥的锋面暴雨以及台风等热带天气系统所致的暴雨是福建南部沿海最主要的两种暴雨类型。即使同处暴雨一致区,暴雨强度及出现的区域也有一定的偶然性。②采用皮尔逊-Ⅲ型法计算不同重现期24 h的最大降水量时,如果不考虑降水的随机性,不做暴雨一致区的特大暴雨移置和特大值处理,将会影响概率论法计算结果的合理性。③暴雨模式的拟定是整个工作的基础,所选暴雨模式中地形对降水有显著的增幅作用,可认为是高效率暴雨模式,故选择水汽放大法计算,与概率论方法比较,计算结果是合理的。  相似文献   

20.
利用常规天气资料及地面自动站、风廓线雷达、新一代天气雷达资料和ERA-Interim逐6 h 0.125°×0.125°再分析资料,分析2015年5月19日福建西部山区一次极端降水的中尺度特征。结果表明:(1)极端降水分为锋前暖区降水和锋面降水两个阶段,暴雨区位于低空西南急流轴左侧,水汽充足,冷暖空气交汇,不稳定能量大,抬升凝结高度和自由对流高度低,大气可降水量大及中等强度的垂直风切变形成有利于中尺度对流系统(mesoscale covective system, MCS)发展的环境条件。(2)锋前暖区降水期间,西南气流携带高能量和水汽充足的空气移入暴雨区被中尺度边界附近的冷出流空气抬升,不断产生新的对流单体,对流单体向东北偏东方向移动,排列形成短雨带;若干条东北—西南向长度不等的短雨带在中尺度出流边界北侧建立,缓慢向东移动,依次重复影响关键区;暴雨关键区存在辐合线和风速辐合,为降水提供了良好的动力抬升条件;向西南开口的河谷地形加强了对流的发展;对流单体不断后部建立和东北西南向多个短雨带重复影响同一地区的列车效应是此阶段MCS主要发展方式。(3)锋面降水期间,对流单体在低涡切变南侧风速辐合、水汽和能量大值区发展东移南压,中高层先于低层转偏北气流,表现出前倾特征,垂直风切变加大,冷空气从中高层先扩散南下,与低层暖湿空气交汇使对流加强,冷暖气流的交汇叠加风速辐合使得强降水加强并维持。对流单体后向传播向东移动产生的列车效应是此阶段MCS主要发展方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号