首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(1-2月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。  相似文献   

2.
利用ERA-Interim地表热通量再分析资料(包含感热通量及潜热通量数据)分析了1979年3月至2009年2月青藏高原地区(下称高原)地面加热场的时空分布特征及其年际变化趋势。突出青藏高原地面加热场与西风急流的联系,分别探讨了青藏高原春季感热及潜热变化的可能影响机制。结果表明:(1)高原感热空间分布大体呈现为自西北向东南递减的特征,潜热与感热呈反相的空间格局,自西北向东南逐渐增强。(2)相比于夏、秋、冬三季,春季高原地表热通量年际变化特征较为突出,其中感热通量显著减少,潜热通量显著增加[分别为-1.83和0.79 W·m~(-2)·(10a)~(-1)],该趋势和全年平均热通量年际变化情况一致。(3)就年际变化而言,春季感热通量与潜热通量之间存在明显的负相关(相关系数为-0.69),表明可能存在某一气候因子使得春季感热减弱而使潜热增强。进一步分析发现,高原地面加热场与西风急流存在密切的联系,春季西风急流的减弱在影响高原感热强度的同时,对高原潜热也具有较大影响。其可能影响机制如下:受高原上空西风急流减弱的影响,高原地表风速减弱从而导致感热通量显著减少;春季西风急流的减弱导致印缅槽的增强,在孟加拉湾上空形成一异常气旋环流,使该地区对流增强、水汽上升异常,同时气旋中北向暖湿气流将水汽携带至高原南侧,并通过影响高原降水量改变其潜热通量。  相似文献   

3.
利用1979—2007年的NECP资料、GISST月平均资料和中国160个降水测站资料,用SVD方法分析了热带海洋性大陆区域OLR与夏季中国降水场的关系。结果表明:孟加拉湾、南海季风槽、南太平洋辐合带(SPCZ)、印尼群岛及其附近海域的对流活动与我国夏季长江中上游降水场存在密切联系。若孟加拉湾、南海季风槽、南太平洋辐合带区的OLR偏高(偏低),及东印度洋、印尼群岛附近的OLR偏低(偏高),则夏季长江中上游及以北地区的降水偏多(偏少)。定义了与长江中上游降水相关的海洋性大陆区域OLR指数IMCOLR,并由IMCOLR指数确定高低值年再进行合成分析,发现印尼群岛及其海域气柱内净的辐射和海表热通量的异常增加,有利于该地区对流活动增强和OLR负异常的产生和维持;而孟加拉湾、南海和热带西太平洋存在海表热通量的减弱和辐射冷却的加强,有利于对流活动减弱,导致潜热释放异常减少和维持OLR正异常。热带海洋性大陆区域对流活动IMCOLR与海表温度异常间的相关关系表明,热带海洋性大陆地区对流活动的年际变动可受到热带印度洋海温异常和太平洋区域“三级型”海温异常的共同影响。这些热力强迫异常可导致对流层低层大气异常响应,产生P-J类遥相关,影响中国长江流域中上游降水异常。  相似文献   

4.
青藏高原中部闪电活动与相关气象要素季节变化的相关分析   总被引:14,自引:5,他引:14  
袁铁  郄秀书 《气象学报》2005,63(1):123-128
利用 1995年 4月至 2 0 0 2年 12月间卫星观测的闪电资料与NCEP再分析资料中的地表降水率、云功函数和热通量 ,分析了青藏高原中部闪电活动与相关气象要素季节变化之间的关系。研究发现 :青藏高原中部闪电活动的峰值出现在 7月份 ,并在春季表现出明显的闪电活动 ;相关气象要素中 ,最能够准确描述闪电活动的季节变化及其春季异常特征的仅有地表总热通量 ;降水 (或云功函数 )与鲍恩比 (感热通量和潜热通量之比 )的乘积能够较好地反映闪电活动的季节分布特征与春季的“异常”。结果表明 ,感热通量或鲍恩比可能在对流有效位能向对流上升动能的转化过程中起着重要的作用 ,鲍恩比可作为修正闪电产生效率的一个重要参量。  相似文献   

5.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

6.
热带西太平洋对流活动与中国夏季降水   总被引:1,自引:0,他引:1       下载免费PDF全文
利用 1 979~ 2 0 0 3年月平均射出长波辐射 (OLR)资料 ,分析了中国夏季江淮多 (少 )雨年的同期及前期热带太平洋地区OLR场分布特征。通过定义和计算OLR对流强度指数 ,探讨对流活动与中国夏季雨型的关系。结果表明 ,夏季热带西太平洋地区平均对流活动强度与同期江淮地区降水有很好的反相关关系 ,即当热带西太平洋地区对流活动强时 ,江淮地区降水易偏少 ,当对流活动弱时 ,江淮地区降水易偏多。不仅如此 ,前期冬、春季对流活动强度与夏季对流活动强度有明显的正相关关系 ,则可利用前期冬、春季对流活动强度对当年中国夏季降水趋势进行预测和补充订正。因此 ,热带西太平洋地区对流活动强弱对于中国夏季降水预测有一定的指示意义。  相似文献   

7.
采用NCEP-FNL再分析资料、FY-2E气象卫星的黑体亮温TBB(Temperature of Black Body)数据以及中国自动站与CMORPH(Climate Prediction Center Morphing)卫星的融合降水产品,通过中尺度天气模式WRFV3.8.1对2014年8月16 17日一次高原涡过程进行了控制试验和4组针对高原土壤湿度的敏感性试验,研究了土壤湿度通过地面加热对高原涡影响的物理机制。结果表明,控制试验能较好地模拟出此次高原涡的位置、强度及降水。土壤湿度对高原涡的强度和降水有重要的作用,而对高原涡的性质和移动路径影响不显著。同时,主要考虑土壤湿度通过地表潜、感热通量的变化来影响高原涡。当土壤湿度增大时,地表潜热通量增大,中低层大气不稳定性增强,对流系统活动所需能量得到积累,使得对流降水增加,最终通过增加凝结潜热的释放来加强高原涡强度;反之高原涡强度和降水都减弱。而本文中地表感热通量的变化对高原涡的生成并没有多大影响,因此只考虑其对对流性降水的影响。当土壤湿度增大时,地面温度减小,地表感热通量减小,行星边界层高度PBLH(Planetary Boundary Layer Height)降低,边界层气团的湿静力能增大,使得对流降水增加;反之对流降水减小。  相似文献   

8.
根据美国NOAA极轨卫星观测得到的射出长波辐射资料(Outgiong Longwave Radiation,简称OLR)分析了西藏高原及其附近地区各月的辐射气候特征,指出:高原冬季OLR为低值区,与降水对应关系较差,主要反映了高原冬季气温低,为冷源;高原夏季为雨季,多阴雨天气,OLR值也较小,且高原夏季降水与OLR存在较好的反相关.OLR的演变特征反映了北半球大气环流调整,同时也反映了高原热力特征的变化.合成分析了西藏高原多雨年和少雨年OLR分布差异,发现夏季旱涝与印度洋东西部对流强弱分布以及印度季风槽、副高等强度和位置变化有密切的关系.  相似文献   

9.
青藏高原地表热状况不仅对局地天气和气候变化有重要影响,而且还在次季节到季节尺度上对周边特别是下游地区的短期气候变化产生影响,因此日益受到研究者的关注。土壤热扩散率和土壤热通量是决定土壤热状况的两个重要因素。不同于以往的研究,本文利用青藏高原地区1980—2001年39个气象站0.8 m和3.2 m的土壤温度资料,采用热传导对流法计算了0.8~3.2 m深层土壤热扩散率和土壤热通量,分析了它们的年变化和年际变化特征,并分析了深层土壤热通量和高原季风的相关关系,得到了一些有意义的结论。青藏高原深层土壤温度随深度的增加振幅减小、位相延迟;在1980—2001年间,土壤热扩散率的变化总体呈减小趋势;土壤深层热通量年变化与土壤表层热通量的年变化具有相反的相位;总热通量与对流热通量的变化具有相同的相位;深层土壤热通量月平均值在冬季为负值(定义热流向上为正),夏季土壤热通量都为正值。土壤热通量与高原冬季风指数的变化趋势相反,相关系数为-0.53;而与高原夏季风指数变化趋势一致,相关系数为0.58,都通过了95%的显著性检验。这些结论对于促使我们认识高原陆气相互作用是非常有意义的。  相似文献   

10.
利用FY2号卫星观测的2008年6-8月OLR资料和T213提供的相对湿度资料,分析了2008年夏季(6-8月)河南空中云系特征和水汽的空间分布,结果表明:实时OLR产品图像可以作为一幅天气图,进行数值化分析和处理.OLR值可以反映中高纬地区对流活动的强弱.2008年夏季,OLR的月平均分布与夏季月总降水量有较好的对应关系;相对湿度月平均分布与河南省月降水量趋势基本一致.  相似文献   

11.
利用第三次青藏高原大气科学观测试验数据,对高原不同地区感热、潜热交换等湍流输送特征进行了分析,并进一步对比研究了其与气象环境因子的相关关系。结果表明:(1)高原各站之间感热和潜热的差异性较大,但大多在雨季潜热会大于感热。干燥的狮泉河站属于高寒荒漠地区,降水极少,全年感热都远大于潜热,波文比年平均值可达到20.0;湿润的比如站和嘉黎站潜热在4~10月均显著大于感热,波文比在4~10月的数值范围在0.27~0.88。(2)高原感热和潜热通量的季节变化与高原季风所处的地理位置有密切关系,高原中部的感热通量在3~5月达到最大值,而高原西部则在4~6月最大,可能与高原季风的活动有关。(3)通过与气象要素的相关分析表明,高原西部狮泉河站感热与地气温差的正相关关系最为显著,全年的相关系数可以达到0.905,在4个季节相关系数也均大于0.79,这可能与下垫面是裸地有关;高原中部安多站和那曲站感热与风速的正相关在夏季最为显著,比如站感热与风速的正相关在冬季最为明显,而狮泉河站感热与风速在春、夏季均有着十分显著的正相关。  相似文献   

12.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

13.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

14.
根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因.得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势.其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降.地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点.高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势.地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后.夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当.地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强.地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变.根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期.低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变.夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关.因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期.本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性.  相似文献   

15.
The thermal forcing of the Tibetan Plateau(TP) during boreal spring,which involves surface sensible heating,latent heating released by convection and radiation flux heat,is critical for the seasonal and subseasonal variation of the East Asian summer monsoon.Distinct from the situation in March and April when the TP thermal forcing is modulated by the sea surface temperature anomaly(SSTA) in the North Atlantic,the present study shows that it is altered mainly by the SSTA in the Indian Ocean Basin Mode(IOBM) in May,according to in-situ observations over the TP and MERRA reanalysis data.In the positive phase of the IOBM,a local Hadley circulation is enhanced,with its ascending branch over the southwestern Indian Ocean and a descending one over the southeastern TP,leading to suppressed precipitation and weaker latent heat over the eastern TP.Meanwhile,stronger westerly flow and surface sensible heating emerges over much of the TP,along with slight variations in local net radiation flux due to cancellation between its components.The opposite trends occur in the negative phase of the IOBM.Moreover,the main associated physical processes can be validated by a series of sensitivity experiments based on an atmospheric general circulation model,FAMIL.Therefore,rather than influenced by the remote SSTAs of the northern Atlantic in the early spring,the thermal forcing of the TP is altered by the Indian Ocean SSTA in the late spring on an interannual timescale.  相似文献   

16.
利用苏州地区2011 年12月20 日-2012年8 月13 日的湍流观测资料对不同季节、高温、台风强天气过程下的湍流特征进行分析.结果表明:城市地区不同季节动量通量、感热通量、潜热通量日变化明显,各通量的夏季平均值、最大值均高于冬春季,夏季感热通量日最大值为160.2 W·m-2,感热在城市地表能量平衡中的作用大于潜...  相似文献   

17.
曾剑  张强  王春玲 《气象学报》2016,74(6):876-888
东亚夏季风边缘摆动区既是气候敏感区,也是生态脆弱区和农牧交错带,其特殊陆面能量空间分布格局和演变特征对理解该区域天气和气候变化有重要意义。然而受限于陆面观测资料缺乏,对这部分陆面特征的认识仍非常有限。通过对34 a陆面模拟集成产品的分析,发现夏季风边缘摆动区内潜热和感热通量在空间上表现出明显的过渡特征,由摆动区外的相对均衡状态进入到摆动区内的“突变转换”;陆面能量平衡具有明显的区域特征,能量平衡各分量在纬向和经向都表现出了“阶梯型”的变化。就演变而言,区域平均感热和潜热没有表现出规律性的递减或递增趋势,波动幅度在±20%以内,但在20世纪末存在一个较为明显的摆动相位转换:1997年之前夏季风边缘摆动区夏季风相对活跃,潜热通量总体高于其气候值而感热通量则低于其气候值,之后出现了相反的现象。此外,区内感热和潜热通量对气候环境干湿性质非常敏感,两者存在明显的线性关系。   相似文献   

18.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

19.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

20.
In this study, a parameterization methodology based on Advanced Very High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and in situ data is proposed and tested for deriving the regional surface heating field, sensible heat flux, and latent heat flux over a heterogeneous landscape. In this case study, this method is applied to the whole Tibetan Plateau (TP) area. Four sets of AVHRR data and four sets of MODIS data (collected on 17 January 2003, 14 April 2003, 23 July 2003, and 16 October 2003) were used in this study to make comparisons between winter, spring, summer, and autumn values. The satellite-derived results were also validated using the “ground truth” as measured in the stations of CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) and Asia–Australia Monsoon Project on the Tibetan Plateau). The results show that the surface heating field, sensible heat flux, and latent heat flux in the four seasons across the TP are in close accordance with its land surface status. These parameters range widely due to the strongly contrasting surface features found within the TP region. Also, the estimated surface heating field, sensible heat flux, and latent heat flux all agree with the ground truth data, and usually, the absolute percentage difference between the two sets of data is less than 10 % at the validation stations. The AVHRR results were also in agreement with the MODIS data, with the latter usually displaying a higher level of accuracy. We have thus concluded that the proposed method was successful in retrieving surface heating field, sensible heat flux, and latent heat flux values using AVHRR, MODIS, and in situ data over the heterogeneous land surface of the TP. Shortcomings and possible further improvements in the method are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号