首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A possible model for the pulsar PSR J1852+0040 associated with the supernova remnant Kes 79 and detected in place of a central compact object in this remnant is discussed. The main observational properties of the pulsar can be understood as consequences of its weak surface magnetic field (B s < 3 × 1011 G) and short rotational period (P ~ 0.1 s). Its X-ray emission is thermal, and is generated in a small region near the surface of the neutron star due to cooling of the surface as the surface accretes matter from a relict disk surrounding the pulsar. The radio emission is generated in the outer layers of the pulsar magnetosphere by the synchrotron (cyclotron) mechanism. The optical luminosity of J1852+0040 is estimated to be L opt < 1028 erg/s. If the spectral features in another central compact object, 1E 1207.4+5209, are interpreted as electron cyclotron lines, this provides evidence for a weak surface magnetic field for this neutron star as well (B < 6 × 1010 G). The hypothesis that all central compact objects have weak surface fields makes it possible to explain the number of detected central compact objects, the absence of pulsar-wind nebulae associated with these objects, and the fact that no pulsar has yet been detected at the position of SN 1987a. We suggest that, after the supernova remnant has dissipated, the central compact object becomes a weak X-ray source (XDINS), whose weak emission is also due to the weakness of its magnetic field.  相似文献   

2.
We consider the influence of a non-dipolar magnetic field on the gamma-ray emission from the polar regions of a radio pulsar. The pulsar is treated in a Goldreich-Julian model with a free flow of charge from the surface of the neutron star. When finding the intensity of the gamma-ray radiation of the pulsar tube, both curvature gamma-ray radiation from the primary electrons and non-resonance inverse Compton scattering of thermal photons from the polar cap on primary electrons are taken into account. When finding the height of the upper plate of the pulsar diode, we included only positrons created by the curvature radiation of primary electrons. We assumed that the polar cap is heated by the return positron current. The influence on the gamma-ray emission of variations in both the radius of curvature of the magnetic force lines and in the electric field due to the non-dipolarity of the magnetic field were taken into account. The presence of even weak non-dipolarity of the magnetic field leads to a sharp decrease in the intensity of the gamma-ray emission from the pulsar tube at energies 1–100 MeV, while the intensity of the inverse Compton radiation (at energies 1–100 GeV) varies only relatively weakly.  相似文献   

3.
It is shown that a model with accretion in a “quasi-propeller” mode can explain the observed spindown of pulsars with periods P<0.1 s. The mean accretion rate for 39 selected objects is \(\dot M = 5.6 \times 10^{ - 11} M_ \odot /year\). If \(\dot M\) is constant during the pulsar’s lifetime, the neutron star will stop rotating after 107 years. The mean magnetic field at the neutron-star surface calculated in this model, \(\bar H_0 = 6.8 \times 10^8 G\), is consistent to an order of magnitude with the values of H0 for millisecond pulsars from known catalogs. However, the actual value of H0 for particular objects can differ from the catalog values by appreciable factors, and these quantities must be recalculated using more adequate models. The accretion disk around the neutron star should not impede the escape of the pulsar’s radiation, since this radiation is generated near the light cylinder in pulsars with P<0.1 s. Pulsars such as PSR 0531+21 and PSR 0833-45 have probably spun down due to the effect of magnetic-dipole radiation. If the difference in the braking indices for these objects from n=3 is due to the effect of accretion, the accretion rate must be of the order of 1018 g/s.  相似文献   

4.
Particles can be accelerated to ultrahigh energies E≈1021 eV in moderate Seyfert nuclei. This acceleration occurs in shock fronts in relativistic jets. The maximum energy and chemical composition of the accelerated particles depend on the magnetic field in the jet, which is not well known; fields in the range ~5–1000 G are considered in the model. The highest energies of E≈1021 eV are acquired by Fe nuclei when the field in the jet is B≈16 G. When B~(5–40) G, nuclei with Z<10 are accelerated to E≤1020 eV, while nuclei with Z≥10 acquire energies E≥2×1020 eV. Only particles with Z≥23 acquire energies E≤1020 eV when B~1000 G. Protons are accelerated to E<4×1019 eV, and do not fall into the range of energies of interest for any magnetic field B. The particles lose a negligible amount of their energy in interactions with infrared photons in the accretion disk; losses in the thick gas-dust torus are also negligible if the luminosity of the galaxy is L≤1046 erg/s and the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the axial ratio of the galactic disk is comparatively high. The particles do not lose energy to curvature radiation if their deviations from the jet axis do not exceed 0.03–0.04 pc at distances from the center of R≈40–50 pc. Synchrotron losses are small, since the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) primarily in the direction of motion. If the model considered is valid, the detected cosmic-ray protons could be either fragments of Seyfert nuclei or be accelerated in other sources. The jet magnetic fields can be estimated both from direct astronomical observations and from the energy spectrum and chemical composition of cosmic rays.  相似文献   

5.
Known models proposed to explain the high space velocities of pulsars based on asymmetry of the transport coefficients of different sorts of neutrinos or electromagnetic radiation can be efficient only in the presence of high magnetic fields (to 1016 G) or short rotation periods for the neutron stars (of the order of 1 ms). This current study shows that the observed velocities are not correlated with either the pulsar periods or their surface magnetic fields. The initial rotation periods are estimated in a model for the magnetedipolar deceleration of their spin, aßsuming that the pulsar ages are equal to their kinematic ages. The initial period distribution is bimodal, with peaks at 5 ms and 0.5 s, and similar to the current distribution of periods. It is shown that asymmetry of the pulsar electromagnetic radiation is insufficient to give rise to additional acceleration of pulsars during their evolution after the supernova explosion that gave birth to them. The observations testify to deceleration of the motion, most likely due to the influence of the interstellar medium and interactions with nearby objects. The time scale for the exponential decrease in the magnetic field τD and in the angle between the rotation axis and magnetic moment τß are estimated, yielding τβ = 1.4 million years. The derived dependence of the transverse velocity of a pulsar on the angle between the line of sight and the rotation axis of the neutron star corresponds to the expected dependence for acceleration mechanisms associated with asymmetry of the radiation emitted by the two poles of the star.  相似文献   

6.
A mechanism for the separation of chemical elements and isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of ions is discussed. The efficiency of separation due to LID is proportional to the relative difference of the transport frequencies for collisions of ions of heavy elements located in the excited state (collision frequency ν e ) and ground state (collision frequency ν g ) with neutral buffer particles (hydrogen and helium), (ν e ? ν g )/ν g . The known interaction potentials are used to numerically compute the relative difference (ν e H ? ν g H )/νg H for collisions between the ions Be+, Mg+, Ca+, Sr+, Cd+, Ba+, Al+, and C+ and hydrogen atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 7000?20 000 K, values of |ν e H g H |/ν g H ≈ 0.1?0.4 are obtained. With such relative differences in the transport collision frequencies, the LID rate of ions in the atmospheres of coolCP stars (T < 10000 K) can reach ~0.1 cm/s,which exceeds the drift rate due to light pressure by an order of magnitude. This means that, under these conditions, the separation of chemical elements under the action of LID of ions could be an order of magnitude more efficient than separation due to light pressure. Roughly the same manifestations of LID and light pressure are also expected in the atmospheres of hotter stars (20 000 > T > 10 000 K). LID of heavy ions is manifest only weakly in very hot stars (T > 20 000 K).  相似文献   

7.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   

8.
Observations on the RadioAstron ground–space interferometer with the participation of the Green Bank and Arecibo ground telescopes at 1668 MHz have enabled studies of the characteristics of the interstellar plasma in the direction of the pulsar PSR B0525+21. The maximum projected baseline for the ground–space interferometer was 233 600 km. The scintillations in these observations were strong, and the spectrum of inhomogeneties in the interstellar plasma was a power law with index n = 3.74, corresponding to a Kolmogorov spectrum. A new method for estimating the size of the scattering disk was applied to estimate the scattering angle (scattering disk radius) in the direction toward PSR B0525+21, θ scat = 0.028 ± 0.002 milliarcsecond. The scattering in this direction occurs in a plasma layer located at a distance of 0.1Z from the pulsar, where Z is the distance from the pulsar to the observer. For the adopted distance Z = 1.6 kpc, the screen is located at a distance of 1.44 kpc from the observer.  相似文献   

9.
Results of timing measurements of the pulsar PSR B0329+54 obtained in 1968–2012 using the Big Scanning Antenna of the Pushchino Radio Astronomy Observatory (at 102 and 111 MHz), the DSS 13 and DSS 14 telescopes of the Jet Propulsion Laboratory (2388 MHz), and the 64 m telescope of the Kalyazin Radio Astronomy Observatory (610 MHz) are presented. The astrometric and rotational parameters of the pulsar are derived at a new epoch. Periodic variations in the barycentric timing residuals have been found, which can be explained by the presence of a planet orbiting the pulsar, with an orbital period P1 = 27.8 yr, mass m c sin i = 2M?, and orbital semi-major axis a = 10.26 AU. The results of this study do not confirm existence of a proposed second planet with orbital period P2 = 3 yr.  相似文献   

10.
Observations of the total magnetic field in the active region NOAA 6757 have been used to study the turbulence regime from 2.5 h before the onset of a 2B/X1.5 flare until two minutes after its maximum. The curvature of the exponent ζ(q) for the structure functions of the B z field increases monotonically before the flare (i.e., the multifractal character of the B z field becomes more complex) but straightens at the flare maximum and coincides with a linear Kolmogorov dependence (implying a monofractal structure for the B z field). The observed deviations of ζ(q) from a Kolmogorov line can be used for short-term forecasting of strong flares. Analysis of the power spectra of the B z field and the dissipation of magnetic-energy fluctuations shows that the beginning of the flare is associated with the onset of a new turbulence regime, which is closer to a classical Kolmogorov regime. The scaling parameter (cancellation index) of the current helicity of the magnetic field, k h , remains at a high level right up until the last recording of the field just before the flare but decreases considerably at the flare maximum. The variations detected in the statistical characteristics of the turbulence can be explained by the formation and amplification of small-scale flux tubes with strong fields before the flare. The dissipation of magnetic energy before the flare is primarily due to reconnection at tangential discontinuities of the field, while the dissipation after the flare maximum is due to the anomalous plasma resistance. Thus, the flare represents an avalanche dissipation of tangential discontinuities.  相似文献   

11.
The magnetic-field structure in regions of stationary, planar accretion disks around active galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component Bφ in the disk arises due to the presence of the radial field Bρ and the azimuthal velocity component Uφ. The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the induction equation in a diffusion approximation. Numerical solutions of the induction equation are given for a number of cases.  相似文献   

12.
We study the growth of the masses of neutron stars in binary systems due to the accumulation of mass from the optical donors accreted onto the neutron-star surface. Possible scenarios for this accretion are considered. The masses and magnetic-field strengths of radio pulsars derived using population-synthesis methods are compared to the observational data. The population-synthesis analysis indicates that a neutron star can increase its mass from the standard value of m x ? 1.35M to the Oppenheimer-Volkoff limit, m x ? 2.5M, via accretion from a companion.  相似文献   

13.
The distribution of the directions of the space velocities of 67 radio pulsars is shown to be strongly anisotropic. This anisotropy cannot be explained by the structure of our Galaxy or by various types of solar motions. Pulsars with stronger surface magnetic fields B have higher velocities V. The mean value of V for B < 1010 G is 108 km/s, while 〈V〉 = 340 km/s for B > 1010 G. These results must be taken into account when identifying a mechanism to explain the observed pulsar velocities and their anisotropy.  相似文献   

14.
15.
Observations of eclipses of the radio pulsar B1259-63 by the disk of its Be-star companion SS 2883 provide an excellent opportunity to study the winds of stars of this type. The eclipses lead to variations in the radio flux (due to variations in the free-free absorption), dispersion measure, rotation measure, and linear polarization of the pulsar. We have carried out numerical modeling of the parameters of the Be-star wind and compared the results with observations. The analysis assumes that the Be-star wind has two components: a disk wind in the equatorial plane of the Be star with a power-law fall-off in the electron density n e with distance from the center of the star \(\rho (n_e \sim \rho ^{ - \beta _o } )\), and a spherical wind above the poles. The parameters for a disk model of the wind are estimated. The disk is thin (opening angle 7.5°) and dense (electron density at the stellar surface n0e ~ 1012 cm?3, β0 = 2.55). The spherical wind is weak (n0e ? 109 cm?3, β0 = 2). This is the first comparison of calculated and observed fluxes of the pulsating radio emission.  相似文献   

16.
Various mechanisms for the loss of angular momentum of neutron stars are analyzed. Theoretical predictions about the evolution of the period are compared with the observed distribution of pulsars on the log\(\dot P\)log(P) diagram. Pulsars with short periods (P≤0.1 s) cannot be fit well by any of the models considered. Their braking index is n=?1, which requires the development of a new braking mechanism. The evolution of pulsars with P>1.25 s is described by the law \(\dot P \propto P^2\), probably due to processes internal to the neutron stars. The observational data for pulsars with 0.1<P≤1.25 s can be fit with a hybrid model incorporating internal processes and magnetic-dipole losses. The magnetic fields in pulsar catalogs should be recomputed in accordance with the results obtained. For example, the magnetic fields obtained for two magnetars with P=5.16 s and P=7.47 s are B s =1.7×1013 and 2.9×1013 G, which are lower than the critical field Bcr=4.4×1013 G. For a substantial fraction of pulsars, their characteristic ages \(\tau = P/2\dot P\) cannot serve as measures of their real ages.  相似文献   

17.
SDO/HMI and SDO/AIA data for the 24th solar-activity cycle are analyzed using a quicker and more accurate method for resolving π ambiguities in the transverse component of the photospheric magnetic field, yielding new results and confirming some earlier results on the magnetic properties of leading and following magnetically connected spots and single spots. The minimum inclination of the field lines to the positive normal to the solar surface α min within umbrae is smaller in leading than in following spots in 78% of the spot pairs considered; the same trend is found for the mean angle 〈α〉 in 83% of the spot pairs. Positive correlations between the α min values and the 〈α〉 values in leading and following spots are also found. On average, in umbrae, the mean values of 〈B〉, the umbra area S, and the angles α min and 〈α〉 decrease with growth in the maximum magnetic field B max in both leading and following spots. The presence of a positive correlation between B max and S is confirmed, and a positive correlation between 〈B〉 and S in leading and following spots has been found. Themagnetic properties of the umbrae of magnetically connected pairs of spots are compared with the contrast of the He II 304 emission above the umbrae, C 304. Spots satisfying certain conditions display a positive correlation between C 304?L and 〈α L 〉 for the leading (L) spots, and between C 304?L /C 304?F and l L /l F , where l L (l F ) are the lengths of the field lines connecting leading (L) or following (F) spots from the corresponding spot umbrae to the apex of the field line.  相似文献   

18.
Measurements of the broadening of pulsar pulses by scattering in the interstellar medium are presented for a complete sample of 100 pulsars with Galactic longitudes from 6° to 311° and distances to three kiloparsec. The dependences of the scattering on the dispersion measure (τ sc(DM) ∝ DMα), frequency (τ sc(v) ∝ v ?γ ), Galactic longitude, and distance to the pulsar are analyzed. The dependence of the scattering on the dispersion measure in the near-solar neighbourhood can be represented by the power law τ sc(DM) ∝ DM2.2±0.1). Measurements at the low frequencies 111, 60, and 40 MHz and literature data are used to derive the frequency dependence of the scattering (τ sc(v) ∝ V ?γ ) over a wide frequency interval (covering a range of less than 10: 1) with no fewer than five frequencies. The index for the frequency dependence, γ = 4.1 ± 0.3, corresponds to a normal distribution for inhomogeneities in the turbulence in the scattering medium. Based on an analysis of the dependence of the scattering on the distance to the pulsar and on Galactic longitude, on average, the turbulence level C n 2 is the same in all directions and at all distances out to about three kpc, testifying to the statistical homogeneity of the turbulence of the scattering medium in the near-solar region of the Galaxy.  相似文献   

19.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

20.
The results of long-term monitoring of irregularies in the rotation rate of the pulsar B1822-09 (J1825-0935) are presented. Observations of the pulsar carried out since 1991 on the Large Phased Array of the Pushchino Radio Astronomy Observatory have revealed a new type of irregularity in the rotation, which has the form of “slow glitches” and is manifest as a gradual exponential growth in the rotation frequency of the star over several hundred days. In 1995–2004, five slow glitches in the rotation frequency were observed, with relative amplitudes of Δν/ν ~ (2.5-32) × 10?9. Together with these unusual “slow glitches” in the rotation frequency, two modest ordinary glitches, associated with sudden, jump-like increases in the rotation frequency, were also observed. The observed irregularities in the rotation frequency of the pulsar are analyzed in detail, and possible interpretations of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号