首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use a simple dynamical model which consists of a harmonic oscillator and a spherical component, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system influence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional x1 orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings.We also compare our results with previous related work.  相似文献   

2.
In several previous papers we had investigated the orbits of the stars that make up galactic satellites and found that many of those orbits were chaotic. In those investigations we made extensive use of the frequency analysis method of Carpintero and Aguilar (1998) to classify the orbits, because that method is much faster than the use of Lyapunov exponents, allows the classification of the regular orbits and our initial comparison of both methods had shown excellent agreement between their results. More recently, we have found some problems with the use of frequency analysis in rotating systems, so that here we present a new investigation of orbits inside galactic satellites using exclusively Lyapunov exponents. Some of our previous conclusions are confirmed, while others are altered. Besides, the Lyapunov times that are now obtained show that the time scales of the chaotic processes are shorter than, or comparable to, other time scales characteristic of galactic satellites.  相似文献   

3.
In the present paper we apply a new method of distinction between ordered and chaotic motion in galactic potentials. The method uses the Fourier Transform of a series of time intervals each one representing the time that elapsed between two successive points on the Poincaré surface of section. Examples of the methods ability to achieve an early and clear detection of an orbit's behavior are provided using two galactic potentials. The new method can also be applied in order to have an early distinction between ordered and sticky orbits. The method is generalized in order to be used in models with more than two dimensions. Finally we have tried to find an one‐number index to give us the nature of the orbit instead of checking by eye the whole spectrum. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We investigate the regular or chaotic nature of star orbits moving in the meridional plane of an axially symmetric galactic model with a disk and a spherical nucleus. We study the influence of some important parameters of the dynamical system, such as the mass and the scale length of the nucleus, the angular momentum or the energy, by computing in each case the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families. Some heuristic arguments to explain and justify the numerically derived outcomes are also given. Furthermore, we present a new method to find the threshold between chaos and regularity for both Lyapunov Characteristic Numbers and SALI, by using them simultaneously.  相似文献   

5.
In several previous papers we had investigated the orbits of the stars that make up galactic satellites, finding that many of them were chaotic. Most of the models studied in those works were not self-consistent, the single exception being the Heggie and Ramamani (1995) models; nevertheless, these ones are built from a distribution function that depends on the energy (actually, the Jacobi integral) only, what makes them rather special. Here we built up two self-consistent models of galactic satellites, freezed theirs potential in order to have smooth and stationary fields, and investigated the spatial structure of orbits whose initial positions and velocities were those of the bodies in the self-consistent models. We distinguished between partially chaotic (only one non-zero Lyapunov exponent) and fully chaotic (two non-zero Lyapunov exponents) orbits and showed that, as could be expected from the fact that the former obey an additional local isolating integral, besides the global Jacobi integral, they have different spatial distributions. Moreover, since Lyapunov exponents are computed over finite time intervals, their values reflect the properties of the part of the chaotic sea they are navigating during those intervals and, as a result, when the chaotic orbits are separated in groups of low- and high-valued exponents, significant differences can also be recognized between their spatial distributions. The structure of the satellites can, therefore, be understood as a superposition of several separate subsystems, with different degrees of concentration and trixiality, that can be recognized from the analysis of the Lyapunov exponents of their orbits.  相似文献   

6.
We study the stability of axial orbits in analytical galactic potentials as a function of the energy of the orbit and the ellipticity of the potential. The problem is solved by an analytical method, the validity of which is not limited to small amplitudes. The lines of neutral stability divide the parameter space in regions corresponding to different organizations of the main families of orbits in the symmetry planes.  相似文献   

7.
In the present article, we use an axially symmetric galactic gravitational model with a disk–halo and a spherical nucleus, in order to investigate the transition from regular to chaotic motion for stars moving in the meridian (r,z) plane. We study in detail the transition from regular to chaotic motion, in two different cases: the time independent model and the time evolving model. In both cases, we explored all the available range regarding the values of the main involved parameters of the dynamical system. In the time dependent model, we follow the evolution of orbits as the galaxy develops a dense and massive nucleus in its core, as mass is transported exponentially from the disk to the galactic center. We apply the classical method of the Poincaré (r,pr) phase plane, in order to distinguish between ordered and chaotic motion. The Lyapunov Characteristic Exponent is used, to make an estimation of the degree of chaos in our galactic model and also to help us to study the time dependent model. In addition, we construct some numerical diagrams in which we present the correlations between the main parameters of our galactic model. Our numerical calculations indicate, that stars with values of angular momentum Lz less than or equal to a critical value Lzc, moving near to the galactic plane, are scattered to the halo upon encountering the nuclear region and subsequently display chaotic motion. A linear relationship exists between the critical value of the angular momentum Lzc and the mass of the nucleus Mn. Furthermore, the extent of the chaotic region increases as the value of the mass of the nucleus increases. Moreover, our simulations indicate that the degree of chaos increases linearly, as the mass of the nucleus increases. A comparison is made between the critical value Lzc and the circular angular momentum Lz0 at different distances from the galactic center. In the time dependent model, there are orbits that change their orbital character from regular to chaotic and vise versa and also orbits that maintain their character during the galactic evolution. These results strongly indicate that the ordered or chaotic nature of orbits, depends on the presence of massive objects in the galactic cores of the galaxies. Our results suggest, that for disk galaxies with massive and prominent nuclei, the low angular momentum stars in the associated central regions of the galaxy, must be in predominantly chaotic orbits. Some theoretical arguments to support the numerically derived outcomes are presented. Comparison with similar previous works is also made.  相似文献   

8.
A galaxy model with a satellite companion is used to study the character of motion for stars moving in the xy plane. It is observed that a large part of the phase plane is covered by chaotic orbits. The percentage of chaotic orbits increases when the galaxy has a dense nucleus of massMn. The presence of the dense nucleus also increases the stellar velocities near the center of the galaxy. For small values of the distance R between the two bodies, low energy stars display a chaotic region near the centre of the galaxy, when the dense nucleus is present, while for larger values of R the motion in active galaxies is regular for low energy stars. Our results suggest that in galaxies with a satellite companion, the chaotic character of motion is not only a result of galactic interaction but also a result caused by the dense nucleus. Theoretical arguments are used to support the numerical outcomes. We follow the evolution of the galaxy, as mass is transported adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data from M51‐type binary galaxies (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The present work investigates a mechanism of capturing processes in the restricted three-body problem. The work has been done in a set of variables which is close to Delaunay's elements but which allows for the transition from elliptic to hyperbolic orbits. The small denominator difficulty in the perturbation theory is overcome by embedding the small denominator in an analytic function through a suitable analytic continuation. The results indicate that motions in nearly parabolic orbits can become chaotic even though the model is deterministic. The theoretical results are compared with numerical results, showing an agreement of about one percent. Some possible applications to cometary orbits are also given.  相似文献   

10.
Orbits in the principal planes of triaxial potentials are known to be prone to unstable motion normal to those planes, so that three dimensional investigations of those orbits are needed even though they are two dimensional. We present here an investigation of such orbits in the well known logarithmic potential which shows that the third dimension must be taken into account when studying them and that the instability worsens for lower values of the forces normal to the plane. Partially chaotic orbits are present around resonances, but also in other regions. The action normal to the plane seems to be related to the isolating integral that distinguishes regular from partially chaotic orbits, but not to the integral that distinguishes partially from fully chaotic orbits.  相似文献   

11.
We construct and compare two different self-consistent N-body equilibrium configurations of galactic models. The two systems have their origin in cosmological initial conditions selected so that the radial orbit instability appears in one model and gives an E5 type elliptical galaxy, but not in the other that gives an E1 type. We examine their phase spaces using uniformly distributed orbits of test particles in the resulting potential and compare with the distribution of the orbits of the real particles in the two systems. The main types of orbits in both cases are box, tube and chaotic orbits. One main conclusion is that the orbits of the test particles in the 3-dimensional potential are foliated in a way quite close to the foliation of invariant tori in a 2-dimensional potential. The real particles describe orbits having similar foliation. However, their distribution is far from being uniform. The difference between the two models of equilibrium is realized mainly by different balances of the populations of real particles in box and tube orbits.  相似文献   

12.
The classical assumption that most globular clusters (hereafter GC) formed in situ in galactic halos is examined in an approximate, empirical way. Although this viewpoint is not rejected per se, an alternative possibility is investigated: the presence of multiple resonances in the galactic disk, together with the concurrent action of a resonant internal bar or distortion, may stir these resonances. This may lead to chaotic motion which breaks the action of the third integral for moderately eccentric orbits. These circumstances may consequently allow the formation of some GC’s in the disk with moderate to highly eccentric orbits, with the action of the resonant bar subsequently gradually driving them (as well as other stars with similar orbits) to spend most of their time in the Galaxy’s halo. The size of the resonant region and the probable effectiveness of the various agents in the associated phase space in the axisymmetric model are listed. An n-body simulation would be required to establish this proposal in a fully self-consistent way. Paper presented at the Division of Dynamical Astronomy Meetings in Halifax, N.S., Canada, June 2006.  相似文献   

13.
This paper summarises an investigation of chaos in a toy potential which mimics much of the behaviour observed for the more realistic triaxial generalisations of the Dehnen potentials, which have been used to model cuspy triaxial galaxies both with and without a supermassive black hole. The potential is the sum of an anisotropic harmonic oscillator potential, ${\text{V}}_{\text{0}} = \frac{1}{2}\left( {a^2 x^2 + b^2 y^2 + c^2 z^2 } \right)$ , and aspherical Plummer potential, ${\text{V}}_{\text{P}} = M_{BH} /\sqrt {r^2 + \varepsilon ^2 } $ , with $r^2 = x^2 + y^2 + z^2$ . Attention focuses on three issues related tothe properties of ensembles of chaotic orbits which impact on chaotic mixing and the possibility of constructing self-consistent equilibria:(1) What fraction of the orbits are chaotic? (2) How sensitive are the chaotic orbits, that is, how large are their largest (short time) Lyapunov exponents? (3) To what extent is the motion of chaotic orbits impeded by Arnold webs, that is, how 'sticky' are the chaotic orbits? These questions are explored as functions of the axis ratio a: b: c, black hole mass M BH, softening length ε, and energy E with the aims of understanding how the manifestations of chaos depend onthe shape of the system and why the black hole generates chaos. The simplicity of the model makes it amenable to a perturbative analysis. That it mimics the behaviour of more complicated potentials suggests that much of this behaviour should be generic.  相似文献   

14.
Linked twist maps of ergodic theory are modified to provide a model for chaotic orbits in ‘double bowl’ potentials in conservative systems, e.g. direct ‘exchange’ orbits in the planar restricted problem of three bodies. The maps are typically ergodic (and mixing), and provide a clue to the nature of relaxation or diffusion in chaotic Hamiltonian systems.  相似文献   

15.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

16.
We use a composite galaxy model consisting of a disk-halo, bulge, nucleus and dark-halo components in order to investigate the motion of stars in ther-z plane. It is observed that high angular momentum stars move in regular orbits. The majority of orbits are box orbits. There are also banana-like orbits. For a given value of energy, only a fraction of the low angular momentum stars — those going near the nucleus — show chaotic motion while the rest move in regular orbits. Again one observes the above two kinds of orbits. In addition to the above one can also see orbits with the characteristics of the 2/3 and 3/4 resonance. It is also shown that, in the absence of the bulge component, the area of chaotic motion in the surface of section increases, significantly. This suggests that a larger number of low angular momentum stars are in chaotic orbits in galaxies with massive nuclei and no bulge components.  相似文献   

17.
We used a multipolar code to create, through the dissipationless collapses of systems of 1,000,000 particles, three self-consistent triaxial stellar systems with axial ratios corresponding to those of E4, E5 and E6 galaxies. The E5 and E6 models have small, but significant, rotational velocities although their total angular momenta are zero, that is, they exhibit figure rotation; the rotational velocity decreases with decreasing flattening of the models and for the E4 model it is essentially zero. Except for minor changes, probably caused by unavoidable relaxation effects, the systems are highly stable. The potential of each system was subsequently approximated with interpolating formulae yielding smooth potentials, stationary for the non-rotating model and stationary in the rotating frame for the rotating ones. The Lyapunov exponents could then be computed for randomly selected samples of the bodies that make up the different systems, allowing the recognition of regular and partially and fully chaotic orbits. Finally, the regular orbits were Fourier analyzed and classified using their locations on the frequency map. As it could be expected, the percentages of chaotic orbits increase with the flattening of the system. As one goes from E6 through E4, the fraction of partially chaotic orbits relative to that of fully chaotic ones increases, with the former surpassing the latter in model E4; the likely cause of this behavior is that triaxiality diminishes from E6 through E4, the latter system being almost axially symmetric. We especulate that some of the partially chaotic orbits may obey a global integral akin to the long axis component of angular momentum. Our results show that is perfectly possible to have highly stable triaxial models with large fractions of chaotic orbits, but such systems cannot have constant axial ratios from center to border: a slightly flattened reservoir of highly chaotic orbits seems to be mandatory for those systems.  相似文献   

18.
The study of the motions of the stars that belong to a galactic satellite (i.e. a globular cluster or a dwarf galaxy orbiting a larger one) has some similarities, as well as significant differences, with that of the restricted three-body problem of celestial mechanics. The high percentage of chaotic orbits present in some models is of particular interest because it rises, on the one hand, the question of the origin of those chaotic motions and, on the other hand, the question of whether an equilibrium stellar system can be built when the bulk of the stars that make it up behave chaotically.  相似文献   

19.
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central ??bumpy?? black hole. When the energy reaches its escape value, a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.  相似文献   

20.
王龙  周洪楠 《天文学报》2002,43(3):302-326
选用银河系中29个累积光谱型为F型的球状星团样本。根据它们的视向速度,绝对自行等参数,归算处理后得出了各样本星团的空间分布和运动速度。并以此作为初始条件,在给定的3种银河系引力势模型中,采用数值积分方法计算出各样本星团的运动轨道。计算结果表明:(1)大部分样本星团都位于银心距5kpc-10kpc的范围内,相对于银心呈球对称分布,它们的速度也呈椭球分布;(2)29个样本星团按其金属度大小和基本性发类,可分属HB和MP两个次系,且样本星团数随金属度[Fe/H]而变化,在[Fe/H]=-1.6处出现一个峰值;(3)所有样本星团的轨道运动都呈周期性,大都在一个有界而不封闭的周期轨道上运动,其最大银心距大都在40kpc以内。不同的引力势模型对球状星团轨道的具体形态影响不大,在给定的引力势模型下,当某些星团的运动轨道穿越距银心1kpc附近的区域时会出现“混沌”行为。而样本星团的金属度与其轨道形态之间的相关性并不明显;(4)29个样本星团的轨道半长轴、远银心距和方位周期随金属度的变化规律基本相似。轨道偏心率与金属度有关,对于所选的晕族样本星团而言,大约有24%的样本星团的轨道偏心率低于0.4,不同的引力势模型对近银心距、偏心率和参数的不确定度等量影响较小,但是对远银心距、径向周期和方位周期等参数影响较为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号