共查询到20条相似文献,搜索用时 62 毫秒
1.
应用四川及部分周边地区边界层气象资料,分析研究了四川盆地大气边界层的风温场特征,结果表明,盆西各季以偏东北风为主,盆东则多以偏东南风为主,使其边界层风场由盆东向盆西南北呈倒槽式的气旋流场,盆地边界层内风速小,地面小风和静风频率较高,大气层结以中性为主,多辐射逆温,逆温强度一般不大(山谷地带除外),混合层高度较低.这些特征的季节性变化不明显,主要与特殊的地形条件相联系. 相似文献
2.
四川盆地大气边界层风温场特征 总被引:2,自引:0,他引:2
应用四川及部分周边地区边界层气象资料,分析研究了四川盆地大气边界层的风温场特征,结果表明,盆西各季以偏东北风为主,盆东则多以偏东南风为主,使其边界层风场由盆东向盆西南北呈倒槽式的气旋流场,盆地边界层内风速小,地面小风和静风频率较高,大气层结以中性为主,多辐射逆温,逆温强度一般不大(山谷地带除外),混合层高度较低。这些特征的季节性变化不明显,主要与特殊的地形条件相联系。 相似文献
3.
济南章丘大气边界层风温场特征研究 总被引:1,自引:0,他引:1
基于章丘气象站2004—2009年实测资料,研究了当地大气边界层风向、风速、气温的时空分布特征,并利用SPSS 17.0数据统计软件的曲线参数估计法,探讨了符合章丘实际的风速随高度变化的拟合曲线及其数学函数关系。结果显示:研究地区大气边界层盛行风向为SSW,且呈现随高度增加沿顺时针方向偏转的特征;风速变化特征在10—300 m和350—1500 m不同高度层存在显著差异,春、夏、秋季和年平均风速随高度变化的指数曲线拟合结果总体好于幂函数曲线,而冬季则相反;气温变化特征四季基本一致,近地面层存在逆温现象,冬季逆温日数最多;逆温强度冬半年的大于夏半年的。 相似文献
4.
5.
6.
7.
8.
青藏高原对我国东部地区的天气和气候、亚洲季风乃至全球大气环流和天气气候都有重要影响,而高原大气边界层作为连接高原独特下垫面和自由大气的桥梁,在上述影响过程中扮演了重要作用。高原大气边界层观测资料的匮乏严重制约着青藏高原天气与气候研究。本文回顾了青藏高原大气边界层结构特征的研究历史,将这些成果进行了总结和分析,并对目前研究中存在的不足之处进行了探讨。 相似文献
9.
10.
11.
The roughness height z
0 and the zero-plane displacement height d
0 were determined for a region of complex terrain in the Pre-Alps of Switzerland. This region is characterized by hills of the order of 100 m above the valley elevations, and by distances between ridges of the order of 1 km; it lies about 20 to 30 km north from the Alps. The experimental data were obtained from radiosonde observations under near neutral conditions. The analysis was based on the assumption of a logarithmic profile for the mean horizontal wind existing over one half of the boundary layer. The resulting (z
0/h) and (d
0/h) (where h is the mean height of the obstacles) were found to be in reasonable agreement with available relationships in terms of placement density and shape factor of the obstacles, which were obtained in previous experiments with h-scales 2 to 4 orders of magnitude smaller than the present ones. 相似文献
12.
The differential equations for first-order (linear) response of the planetary boundary layer are formulated for flow over periodic terrain, for variations in both surface roughness and terrain elevation. A simple second-order closure model of the turbulence is used, and Coriolis forces are neglected. Flow over a periodic terrain produces corresponding periodic structure in all meteorological fields above the surface. The periodic structure consists of two components. The first is very nearly evanescent with height. It corresponds to the motion that would be observed were the atmosphere inviscid. The second component, introduced by turbulent viscosity, exhibits a phase variation with height in addition to a decay in amplitude. W.K.B. [Wentzel-Kramers-Brillouin] approximations for the two components are developed, and the coupling between the components is discussed. The formulation for calculating solutions by numerical integration is developed, including specification of appropriate boundary conditions. Calculations are presented in a companion paper.Wave Propagation Laboratory.Environmental Science Group. 相似文献
13.
The first-order (linear) response of the planetary boundary layer is calculated for flow over periodic terrain, for variations in both surface roughness and terrain elevation. Calculations are made for horizontal wavenumbers varying from 10–4m–1 to 3 × 10–3m–1. A simple second-order closure model of the turbulence is used, and Coriolis and buoyancy forces are neglected. As expected, flow over a periodic terrain produces corresponding periodic structure in all meteorological fields above the surface. The periodic structure consists of two components. The first is very nearly evanescent with height, showing little vertical structure. It corresponds to the motion that would be observed were the atmosphere inviscid. The second component, introduced by turbulent viscosity, exhibits considerable vertical structure, with vertical wavelengths the order of 100 m, and thus could be responsible for the layering often seen on acoustic sounder observations of the atmospheric boundary layer.Wave Propagation Laboratory.Environmental Science Group. 相似文献
14.
The vertical and horizontal temperature structure of the atmospheric boundary layer (ABL) were studied using aircraft observations made in the lowest 2.4 km above ground level during the summer monsoon.The vertical temperature structure of the ABL in the region may be classified into the following four categories.Category The ABL consisted of two layers of thickness 700–900 m separated by a thin transition layer. The lapse rates in the former two layers were dry adiabatic.Category The lowest layer of the ABL of thickness 400–600 m was adiabatically stratified and the overlying layer was stable with gradients of potential temperature 4–5°C km–1. The stable layer contained a thin adiabatic stratified layer of 200–300 m thickness at a height of 1.5 km.Category The lowest 200–400 m layer of the ABL was adiabatically stratified and the overlying layer was stable with potential temperature gradients of 5–6 °C km1.Category The ABL was mainly stable with potential temperature gradients of 6 °C km–1 or greater. Occasionally thin layers with adiabatic stratification were found embedded in the ABL.The temperature distribution of the horizontal temperature at 900 m was mainly normal. The high-frequency portion of the spectra lying between 0.05 and 0.16 Hz (corresponding to wave length 1 km to 300 m) oscillated around the –\2/3 power law line. The spectral curve showed a significant peak at 0.011 Hz having a wave-length of 5 km.Department of Geoscience, North Carolina State University, Raleigh, NC, 27650, U.S.A. 相似文献
15.
The structure of thunderstorm in the atmospheric boundary layer in Beijing area is analysed by using three-year data of tower. It is indicated that the outflow current of the thunderstorm in the lower layer is a sort of density current. An area of evident wind direction shear is found at about half an hour to one hour before the arrival of the gust front.The maximum intensity of the shear can reach 0.35sec-1.The inner structure within the density current is also very complicated. At the nocturnal stable boundary layer in summertime, the development of the convective motions is often triggered due to the instability of the Kelvin-Helmholtz wave. 相似文献
16.
A three-dimensional model for wind prediction over rough terrain has been developed for practical use. It is a compromise between hydrodynamic and objective wind models. The proposed model includes: (1) a statistical model to predict the wind velocity and potential temperature at anemometer height at observing stations, (2) the drainage wind model expressed by Prandtl's analytic solution for the slope wind, (3) the Businger-Dyer surface-layer formulation which considers the surface energy budget and (4) the model for three-dimensional boundary-layer solutions to the stationary flow. In this model, mass consistency is guaranteed by using flow fields that satisfy the continuity equation. Model predictions show good agreement with the observations. 相似文献
17.
The spectral density of temperature fluctuations in the boundary layer has been studied in the range 0.2 to 2 Hz. It is shown that the temperature spectrum is strongly variable from one minute to the next and that the spectral slope tends to increase with the standard deviation of temperature fluctuations and with the stability of the medium. It is shown that C
T
2
values computed from short time series (30 s) tend to be smaller than the C
T
2
values computed from several minutes of record.Formerly at Laboratoire de Météorologie Dynamique du C.N.R.S. (Paris). 相似文献
18.
成都地区大气边界层逆温特征分析 总被引:5,自引:0,他引:5
针对污染气象条件对大气环境影响的问题,利用2010—2012年成都地区探空资料的温度数据,系统研究了成都地区逆温的结构及分布特征。结果表明:2010—2012年成都地区整体以贴地逆温出现频率最高、厚度最大及强度最强,其次为低悬逆温和高悬逆温。不同类型逆温出现的频率、厚度及强度也存在一定的季节差异,贴地逆温春季出现频率最高,厚度最大,其他各季差异不显著;冬季逆温最强,夏季最弱。3类逆温的日变化明显,08时逆温出现的频率和厚度普遍大于20时,且08时逆温强度大于20时。分析成都地区大气边界层逆温层特征,对了解成都地区污染物扩散规律具有重要的意义。 相似文献
19.
E. G. Klimova N. V. Kilanova O. A. Dubrovskaya R. B. Zaripov 《Russian Meteorology and Hydrology》2010,35(9):596-603
The procedure is described of the estimation of statistical structure of short-range forecast errors of temperature field in the atmospheric boundary layer for the purpose of objective analysis. The numerical experiments on the estimation of forecast error covariances were carried out for the WRF (Weather Research and Forecast, NCEP, USA) model. The comparative experiments were implemented on the estimation of the influence of stability type in the atmospheric boundary layer on the variability of vertical and three-dimensional covariances. It is demonstrated that the variance and radius of correlation of temperature field forecast errors along the vertical as well as the variability of three-dimensional covariance functions in the atmospheric boundary layer differ considerably at different stability types. The results are cited of the numerical experiments on the estimation of the WRF model temperature field forecast error covariances in the atmospheric boundary layer for summer and winter periods. 相似文献
20.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。 相似文献