首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A state-of-the art Rayleigh and Mie backscattering lidar was set up at Gadanki (13.5N, 79.2E) in the Tropics in India. Using this system, regular observations of upper tropospheric clouds, aerosols at stratospheric heights and atmospheric temperatures in the range from 30 to 80 km were made. In this paper, the data collected during the period of 1998–99 were selected for systematic investigation and presentation. The Mie scattering lidar system is capable of measuring the degree of depolarization in the laser backscattering. Several tropical cirrus cloud structures have been identified with low to moderate ice content. Occasionally, thin sub-visible cirrus clouds in the vicinity of the tropical tropopause have also been detected. The aerosol measurements in the upper troposphere and lower stratosphere show low aerosol content with a vertical distribution up to 35 km altitude. Rayleigh-scattering lidar observations reveal that at the tropical site, temperature inversion occurs at mesospheric heights. Atmospheric waves have induced perturbations in the temperatures for several times at the upper stratospheric heights. A significant warming in the lower mesosphere associated with a consistent cooling in the upper stratospheric heights is observed particularly in the winter season during the events of sudden stratospheric warming (SSW).  相似文献   

2.
A few years ago, we identified a deep convective transport mechanism, of water vapor through the tropopause, namely, storm top gravity wave breaking, such that tropospheric water substance can be injected into the lower stratosphere via this pathway. The main evidence presented previously was taken from the lower resolution AVHRR images of the storm anvil top cirrus plumes obtained by polar orbiting satellites. Recent observations have provided further supporting evidence for this important cross-tropopause transport mechanism. There are now many higher resolution satellite images, mainly from MODIS instrument, that show more definitely the existence of these plumes, many of which would probably be unseen by lower resolution images.Furthermore, a thunderstorm movie taken in Denver (USA) area during STEPS2000 field campaign and another thunderstorm movie taken by a building top webcam in Zurich also demonstrate that the jumping cirrus phenomenon, first identified by T. Fujita in 1980s, may be quite common in active thunderstorm cells, quite contrary to previous belief that it is rare. We have used a cloud model to demonstrate that the jumping cirrus is exactly the gravity wave breaking phenomenon that transports water vapor through the tropopause.These additional evidences provide increasing support that deep convection contributes substantially to the troposphere-to-stratosphere transport of water substance. This corroborates well with recent studies of the stratospheric HDO/H2O ratio which is much highly than it would be if the transport is via slow ascent. The only explanation that can be used to interpret this observation at present is that water substance is transported through the tropopause via rapid vertical motion, i.e., deep convection.  相似文献   

3.
A series of nearly daily ozone vertical profiles obtained at station T-3 on Fletcher's Ice Island (85°N, 90°W) during the period January-March 1971 shows several significant ozone intrusions into the troposphere. These intrusions are not only associated with enhanced ozone amounts in the stratosphere but also require tropopause folding events to transport ozone into the troposphere. These folds in the Arctic tropopause appear to be capable of contributing significantly to the ozone budget of the Arctic troposphere during the late winter and spring seasons. The importance of tropopause folding for bringing ozone into the troposphere seen in the daily ozone profiles confirms the results found in the Arctic Gas and Aerosol Sampling Program aircraft flights.  相似文献   

4.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

5.
Cumulus mergers in the maritime continent region   总被引:1,自引:0,他引:1  
Summary We examine a family of tall (up to 20 km) cumulonimbus complexes that develop almost daily over an adjacent pair of flat islands in the Maritime Continent region north of Darwin, Australia, and that are known locally as Hectors. Nine cases observed by a rawinsonde network, surface observations (including radiation and soil measurements), the TRMM/TOGA radar, and one day of aircraft photography are used to analyse the development, rainfall, surface energy budgets, and vertical structure of these convective systems.The systems undergo convective merging which is similar to that observed in previous Florida studies and is multiplicative in terms of rainfall. About 90% of the total rainfall comes from the merged systems, which comprise less than 10% of convective systems, and this has implications for the manner in which tropical rainfall is parameterised in largerscale numerical models. By comparison to the West Indies, GATE, and Florida, the Hector environment contains a weaker basic flow, with less vertical shear. The main thermodynamic difference is that the Darwin area has an unstable upper troposphere and very high tropopause. Numerical modelling results support earlier observations of updraughts in excess of 30 ms–1 in this region, but show that only modest convective drafts are experienced below the freezing level (5 km).The surface fluxes over the islands are estimated from a Monash University study to be mainly in latent form from evapotranspiration, with a Bowen ratio only slightly larger than that commonly observed over oceans. These surface fluxes are crucial to the development of a suitable mixed layer to support deep convection. The flux estimates agree with the observed changes below the cloud base and provide sufficient information for calculations of the bounds on precipitation efficiency. Of particular interest are the observations of Hector development on a day when the islands were under a dense cirrus overcast. We find that the islands still provide sufficient net sensible and latent heat fluxes to initiate convection.With 10 Figures  相似文献   

6.
7.
Remote sensing of cloud liquid water   总被引:1,自引:0,他引:1  
Summary A method is presented to infer cloud liquid water path (LWP in kg/m2) over the ocean from passive microwave measurements of SSM/I. The algorithm to retrieve LWP is based on simulated satellite observations. They are calculated with a radiative transfer model applied to about 3000 radiosonde ascents over the Atlantic Ocean. Since radiosonde observations do not contain direct information about cloud water and ice, these parameters are parameterized based on relative humidity and temperature using modified adiabatic liquid water density profiles. A multiple linear regression is applied to the simulated radiances and the calculated LWP to derive the algorithm. The retrieval accuracy based on the regression analysis including instrumental noise is 0.03 kg/m2. Validation of the LWP-algorithm was pursued through a comparison with measurements of a ground-based 33 GHzmicrowave radiometer on board of R.V. Poseidon during the International Cirrus Experiment 1989 at the North Sea (ICE'89). The LWP values agree within the range of uncertainty caused by the different sampling characteristics of the observing systems. The retrieval accuracy for clear-sky cases determined using colocated METEOSAT data over the North Sea is 0.037 kg/m2 and confirms the accuracy estimated from regression analysis for the low liquid water cases.The algorithm was used to derive maps of monthly mean LWP over the Atlantic Ocean. As an example the Octobers of the 5 years 1987–1991 were selected to demonstrate the interannual variability of LWP. The results were compared with the cloud water content produced by the climate model ECHAM-T2 from the Max-Planck-Institut Hamburg.Observations during ICE'89 were used to check the accuracy of the applied radiative transfer model. Brightness temperatures were calculated from radiosonde ascents launched during the overpass of DMSP-F8 in cloud-free situations. The channel-dependent differences range from about –2 to 3 K.The possibility to identify different cloud types using microwave and infrared observations was examined. The main conclusion is that simultaneous microwave and infrared measurements enable the separation of dense cirrus and cirrus with underlying water clouds. A classification of clouds with respect to their top heights and LWP was carried out using a combination of SSM/I derived LWP and simultaneously recorded Meteosat IR-data during ICE'89.With 11 Figures  相似文献   

8.
Data are presented on some structure parameters of mesoscale turbulence mechanisms playing a significant role in the troposphere-stratosphere exchange in the tropical tropopause layer and in the lower stratosphere. The data are obtained in the framework of the international aircraft AMMA experiment in Burkina Faso (West Africa) in August 2006.  相似文献   

9.
Pao K. Wang   《Atmospheric Research》2007,83(2-4):254-262
The thermodynamic structure on top of a numerically simulated severe storm is examined to explain the satellite observed plume formation above thunderstorm anvils. The same mechanism also explains the formation of jumping cirrus observed by Fujita on board of a research aircraft. A three-dimensional, non-hydrostatic cloud model is used to perform numerical simulation of a supercell that occurred in Montana in 1981. Analysis of the model results shows that both the plume and the jumping cirrus phenomena are produced by the high instability and breaking of the gravity waves excited by the strong convection inside the storm. These mechanisms dramatically enhance the turbulent diffusion process and cause some moisture to detach from the storm cloud and jump into the stratosphere. The thermodynamic structure in terms of the potential temperature isotherms above the simulated thunderstorm is examined to reveal the instability and wave breaking structure. The plumes and jumping cirrus phenomena represent an irreversible transport mechanism of materials from the troposphere to the stratosphere that may have global climatic implications.  相似文献   

10.
Statistics on the vertical wind shear in the boundary layer over the Indian Ocean were examined for the causes of regional and seasonal changes. Low-level cloud motions and surface ship wind reports were used to define the vertical shear. Temperature data from the ship reports were analyzed for boundary-layer stability related to the observed shears. Smaller wind shears were found in areas of large negative air-sea temperature difference (unstable boundary layers). The thermal wind effects were very small over most of the tropical Indian Ocean. The largest factor affecting the speed shear was the strength of the wind itself. Larger speed shear was found under high wind conditions. A small reduction in the direction difference between cloud and ship observations also was found under higher speeds. The scatter of cloud-ship comparisons around the mean (dispersion) also decreased for higher wind speeds. Daily gridded cloud motion and ship wind speed data had a correlation coefficient of 0.8 with a scatter of 1.9 m s-1 (r.m.s.) around the mean difference.  相似文献   

11.
Summary Erythemal ultraviolet (UV) doses reaching the earths surface depend in a complex manner on the amount of total ozone, cloud cover, cloud type and the structure of the cloud field. A statistical model was developed allowing the reconstruction of UV from measured total ozone and a cloud modification factor (CMF) for the GAW site Hohenpeissenberg, Germany (48°N, 11°E). CMF is derived from solar global radiation G, normalized against a Rayleigh scattering atmosphere. By this way the complex influence of the cloud field is accounted for by introduction of a measured parameter, exposed also to this complex field. The statistical relations are derived from the period 1990–1998 where UV measurements and relevant meteorological parameters are available. With these relations daily UV doses could be reconstructed back to 1968. Tests show that the model works remarkably well even for time scales of a minute except for situations with high albedo. The comparison of measured and calculated UV irradiances shows that the model explains 97% of the variance for solar elevations above 18° on average over the period 1968–2001. The reconstruction back to 1968 indicates that maximum UV irradiances (clear days) have increased due to long-term ozone decline. Clouds show seasonally depending long-term changes, especially an increase of cirrus. Consequently the UV doses have increased less or even decreased in some months in comparison to the changes expected from the ozone decline alone. In May to August total cloud frequency and cloud cover have decreased. Therefore, the average UV doses have increased much more than can be explained by the ozone decline alone. It is also shown that the optical thickness of cirrus clouds has increased since 1953. The higher frequency of cirrus is caused in part by more frequent contrails. Besides that an observed long-term rise and cooling of the tropopause favors an easier cirrus formation. However, whether climate change and an intensification of the water cycle is responsible for the cirrus trends has not been investigated in detail.  相似文献   

12.
Some results of studying thermodynamics of the tropical tropopause and lower stratosphere performed with the help of the stratospheric M-55 Geofizika research aircraft during the international TROCCINOX experiment in 2005 in Brazil are considered. New data on a mesoscale structure of the wind, temperature, and humidity fields over the continental tropics are derived.  相似文献   

13.
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources.  相似文献   

14.
Summary The probabilistic approach to tropical cyclogenesis is advanced here by examining the role of convection in the early stages. The development of hot towers, that is tall cumulonimbus towers which reach or penetrate the tropopause, and their role in tropical cyclogenesis is investigated in two well-documented cases of formation. namely hurricane Daisy (1958) in the Atlantic and Tropical Cyclone Oliver (1993) in the Coral Sea. The hot towers in Daisy had been intensively studied by Malkus and Riehl three decades ago but remained mainly unpublished. The dynamics of Oliver genesis by merging mesoscale vortices has been recently reported, but much of the aircraft data remained. This paper adds the evolving contribution of cumulus-scale events and their associated electrification, which was made possible by the addition of an electric field mill, a numerical cloud model and other remote sensors.In their genesis stages, Daisy and Oliver appeared very different because Daisy resulted from a deepening tropical wave in the Atlantic and the pre-Oliver vortex emerged eastward from the Australian monsoon trough. However, the vertical profiles of E in the rain areas were nearly identical, with the characteristic concave shape showing substantial midlevel minima. Therefore, both required increasing upflux of high E subcloud air in order to accomplish the formation stage, with about two hot towers each in the nascent eyewall. In both cases, partial eyewalls developed at the edge of the convection, permitting subsidence in the forming eye, which was shown to contribute to the pressure fall. The probabilistic concept proposes that any contribution to early pressure fall raises the probability of success. When the incipient storm goes through those fragile phases more rapidly, the risk of death by the onset of unfavorable large-scale factors such as wind shear or upper-level subsidence is reduced. Daisy developed in an inactive, moist environment with light, variable winds throughout the troposphere while in Oliver, strong divergent upper outflow apparently outweighed strong wind shear, although the latter was responsible for a slow and messy development of a closed, circular eye.In both storms, the hot towers in the major rainband were taller and stronger than those in the early eyewall. Onedimensional time-dependent model runs were used to simulate both in Oliver with two important results: 1) the taller rainband clouds permitted greater high level heating, if it could be retained; and 2) greater electrification and more lighting occurred in the rainband although the partial eyewall clouds also showed strong electrification. Airborne radar, electrification measurements and models are fitted together to understand their relationship. An important result is the clear inference that fairly deep mixed phase regions existed in both eyewall and rainband, in which the DC-8 aircraft experienced liquid water at temperatures colder than –40°C below freezing. These results show that the claims of no supercooled liquid water in tropical cyclones require re-examination with the proper measurements of electricification that are now feasible.With 13 Figures  相似文献   

15.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

16.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

17.
为了揭示深对流云直接向平流层输送水汽的物理机制,利用WRF中尺度模式的理想个例运行方式对CCOPE(Cooperative Convective Precipitation Experiment)试验期间的一次超级单体进行了数值模拟。选用Thompson云微物理过程方案设置一系列初始云滴数浓度(N_c)进行模拟试验后发现,N_c=175 cm~(-3)情形下模拟云的最大垂直风速与实测结果最为接近,并且模拟出了超级单体。因此,本文利用该模拟结果分析了超级单体向平流层输送水汽的机制。1 min一次的输出结果表明:冻干脱水机制与本次所模拟出的平流层加湿没有直接的关系,超级单体向平流层输送水汽的主要机制可能为湍流输送机制,而升华加湿机制的作用很小。这是由于超级单体云上部的冰晶大部分被消耗而形成雪,因此被输送到平流层的主要是雪这种落速较大粒子,这种粒子不易被向上输送但又容易降落,因此升华所形成的水汽量相比湍流输送的水汽量小很多。湍流造成的水汽输送通量密度的量级约为10~(-9)kg·m~2·s~(-1)。  相似文献   

18.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

19.
基于1979—2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法计算出青藏高原及同纬度其他地区热带对流层顶气压数据,比较了高原和同纬度其他地区热带对流层顶气压季节变化和长期变化趋势,讨论了热带对流层顶气压与高空温度的关系。结果表明:1)在季节变化上,除12月和1月外,青藏高原热带对流层顶气压全年低于同纬度其他地区;青藏高原热带对流层顶气压、对流层中上层以及平流层下部平均温度均表现出比同纬度其他地区更明显的单峰型特征。2)热带对流层顶气压与高空温度变化关系密切,对流层中上层(平流层下部)平均温度升高(降低),有利于热带对流层顶气压降低;相对于同纬度其他地区,青藏高原对流层顶气压与对流层中上层平均温度的关系更密切。3)1979—2014年青藏高原和同纬度其他地区各季节的热带对流层顶气压均呈现出不同程度的下降趋势,冬春季下降趋势更加显著;青藏高原各季节对流层中上层增温和平流层下部降温的幅度均超过同纬度其他地区,导致其热带对流层顶气压的下降趋势比同纬度其他地区更加明显。  相似文献   

20.
Based upon airborne trace gas and isotope observations in the winter months 1991/1992 to1994/1995, transport pathways across the mid-latitude and Arctic tropopause areinvestigated. A powerful set of contrasting transport tracers are examined, such asdeuterated water vapor (HDO) which is shown to trace the passage of water vapor from thetroposphere into the lowermost stratosphere (LS), or the `SF6 age' defined as theresidence time of an air parcel within the stratosphere since its entry at thetropopause. Cross-tropopause transport in both directions was found near mid-latitudecyclones (at baroclinic flanks of troughs in the polar front), in which about 80% of thestratosphere-to-troposphere flux proceeded along potential temperature ()surfaces of 300 ± 10 K. As these isentropes are the lowest which reach into the LS(in winter), a mixing zone just above the Arctic tropopause (at least 1.5 km thick) isformed. Here, upwelling tropospheric air is mixed with downwelling LS air which isaffected by air from higher altitudes, the surf-zone and the polar vortex. The observedelevated D/H isotope ratio of water vapor within the mixing zone can be explained byinjection of subtropical water vapor that is transported to the tropopause by the warmconveyor belt associated with mid-latitude cyclones. Downward vertical transport ofArctic LS air, which may be influenced by ouflowing chemically disturbed polar vortexair, into the Arctic troposphere was found to be small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号