首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deciphering the relationship between polyphase tectonic foliations and their associated mineral assemblages is significant in understanding the process from diagenesis to low-/medium-/high-grade metamorphism. It can provide information related to strain, metamorphic conditions and overprinting relationships and so help reveal the tectonic evolution of orogenesis. In this study, we predominately focus on the formation of foliations and their related minerals, as developed in two separate basins. First of all, two stages of axial plane cleavages (S1 and S2) were recognized in the Hongyanjing inter-arc basin, the formation of the S1 axial plane cleavage is associated with mica rotation and elongation in mudstones in the local area. The pencil structure of S2 formed during the refolding phase, the minerals in the sedimentary rocks not changing their shape and orientation. Secondly, in the Liao-Ji backarc basin, foliations include diagenetic foliation (bedding parallel foliation), tectonic S1 foliation (secondary foliation or axial plane cleavage of S0 folding) and crenulation cleavage (S2). The formation mechanism of foliation changes from mineral rotation or elongation and mineral solution transfer in S1 to crystal-plastic deformation, dynamic recrystallization and micro-folding in S2. Many index metamorphic minerals formed from low-grade to medium-grade consist of biotites, garnets, staurolite and kyanite, constituting a typical Barrovian metamorphic belt. Accordingly, a new classification of foliation is presented in this study. The foliations can be divided into continuous and disjunctive foliations, based on the existence of microlithons, detectable with the aid of a microscope. Disjunctive foliation can be further sub-divided into spaced foliation and crenulation cleavage, according to whether (or not) crenulation (micro-folding) is present. The size of the mineral grains is also significant for classification of the foliations.  相似文献   

2.
Abstract TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km-1. Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.  相似文献   

3.
Using X-ray diffraction analysis, the mutual relations among illite crystallinity, degree of preferred orientation of chlorite, grain size change of chlorite and illite during metamorphism and development of slaty cleavage have been investigated for argillaceous rocks in the South Kitakami Mountains, northeast Japan.The metamorphic grade of IC (illite crystallinity index) = 0.29 is a critical one, beyond which the homogenization of chlorite composition, coarsening of chlorite and illite grains and degree of preferred orientation of chlorite are abruptly advanced. Grain coarsening is also promoted by the development of slaty cleavage, especially in the range of coarser grain size.The oriented growth by the effects of both the anisotropy of intrinsic growth rate of mineral grains and that of the environment in which grains grow, is considered to bring about the preferred orientation of chlorite and illite.  相似文献   

4.
Abstract Illite crystallinity (IC) measurements, determination of the proportion of 2M mica-polytypes and organic-matter reflectance measurements establish regional diagenetic/low-grade metamorphic trends for the Taconian and Acadian belts of Gaspé Peninsula. IC varies as a function of many factors besides maximum burial temperature and heating time. Correlation between IC and %2M illite polytypes for the Fortin Group and Temiscouata Formation suggests (i) that the amount of high-grade detrital mica in the samples is low, and (ii) that IC can be used with some confidence as an estimator of regional thermal maturation levels. Correlation of these parameters with available organic reflectance values further supports this assumption. The illites of the Temiscouata and western Fortin groups are mostly phengitic in composition, whereas in the eastern outcrop belt they are more Mg- and Fe-rich (celadonitic), but generally also of lower grade and lower 2M content. The d(060) values for illites measured on the unorientated <2-μm fraction of samples fall between 1.502 and 1.503 Å (range: 1.500–1.504 Å), indicating relatively low octahedral occupancy by Mg and Fe (between one-fifth and one-third of the available spaces). Pyrophyllite and paragonite were not detected. Chlorites are Fe-rich and ripidolitic. The IC map for the Acadian belt of the peninsula displays general congruence between IC contours (2200 sample points) and structural trends for the 27,000-km2 area. The highest grades (anchimetamorphic) are associated with the oldest rocks (Honorat and Matapedia groups) exposed in the cores of major anticlines. Anchimetamorphic grades associated with the western outcrop belt of the Lower Devonian Fortin Group require 7–8 km of subsidence to accommodate sufficient thickness of overlying younger rocks (on top of 4–5 km of Fortin Group deep-water clastics) to explain the grades in terms of burial metamorphism assuming a geothermal gradient of 30° C km?1. The lowest-grade diagenetic rocks occupy a large area in the northeastern part of the peninsula, smaller areas in the northwestern part of the Acadian belt, in the centre of Chaleurs Bay synclinorium, and in the Ordovician Mictaw Group. The contact between the Taconian and Acadian belt is marked by a distinct maturation discontinuity. The Grand Pabos fault juxtaposes rocks of contrasting maturation levels (Matapedia Group against Fortin Group) in the west, but shows no maturation offset further east in the Honorat Group. The fault zone limiting the Fortin Group in the north is also associated with a major IC jump.  相似文献   

5.
A 200 m thick mudstone unit in the Carboniferous of the Cantabrian Mountains, northern Spain, exhibits an increase in intensity of the slaty cleavage from top to bottom which appears to be correlated with a decrease in the mean grain size, average bed thickness and quartz: mica ratio. Anastomosing cleavage domains, formed by pressure solution and by kinking and rotation of the detrital micas, become closer spaced, wider and more continuous towards the finer-grained base of the unit. Growth of strongly oriented new micas within the cleavage domains also appears to be correlated with the intensity of the domain development and hence with the initial lithology. Clay minerals have been completely replaced throughout the mudstone by muscovite, paragonite and pyrophyllite during low-grade metamorphism. The growth of an oriented mica fabric, however, is restricted to samples with well-developed cleavage domains.  相似文献   

6.
The Lower Silurian??Lower Devonian Arisaig Group (Antigonish Highlands) in the Canadian Appalachians is a sequence of shallow marine strata deposited after the accretion of Avalonia to Baltica during the closure of the Iapetus Ocean. Deformation of the strata is widely attributed to the Devonian Acadian orogeny and produced shallowly plunging regional folds and a cleavage of varying penetrativity. Phyllosilicate minerals from the finest-grained rocks exhibit very low-grade (diagenetic-anchizone) metamorphic conditions. X-ray diffraction study reveals that the sampled rocks contain quartz, K-white mica, chlorite, and feldspars; illite?Csmectite and chlorite?Csmectite mixed-layers are common but Na?CK mica and kaolinite occur only in some samples. The identification of illite?Csmectite mixed-layers in diagenetic samples, with Kübler Index >0.50 ??°2?? and the highly heterogeneous b-cell dimension of the K-white micas are in agreement with the variable chemical composition of dioctahedral micas, which present low illitic substitution and variable phengitic content. The spatial variation in the above crystal-chemical parameters was plotted along a NW?CSE composite cross section across the regional folds. No correlation was found between the metamorphic conditions and either the stratigraphic depth or the strain values measured by phyllosilicates orientation analyses, as a function of the penetrativity of the cleavage. However, the metamorphic grade generally increases towards the Hollow Fault, and is highest in samples located within a 1?km corridor from the fault surface. Incipient cleavage is observed in the anchizonal samples located in the vicinity of the Hollow Fault and in some of the diagenetic samples, indicating cleavage development under low temperatures (<200?oC). These relationships, together with regional syntheses, suggest low-grade metamorphism post-dated regional folding and was coeval with Late Carboniferous dextral movement along the Hollow Fault. Fluid circulation associated with movement along this major fault may be the driving mechanism for the increasing metamorphism towards it.  相似文献   

7.
The Michigamme Formation of the Marquette District in Michigan's Upper Peninsula comprises a sequence of cleaved rocks of increasing metamorphic grade. Because metamorphism in the area occurred after cleavage formation, the rocks provide an opportunity to study preferred orientation development of phyllosilicates under conditions of static recrystallization.X-ray texture goniometry on samples from the greenschist-facies zone that were collected at varying distances from the bounding biotite-in and garnet-in isograds, shows that: (1) the preferred orientation of phyllosilicates is always parallel to the mesoscopic cleavage, and (2) the degree of preferred orientation of phyllosilicates improves as a function of increasing metamorphic grade (from <4 to >9 m.r.d.). Scanning electron microscopy on these samples shows that: (1) the length/width ratio increases with increasing grade, and (2) grain shapes are better defined with increasing grade.Previous work on slates showed mechanical processes dominate at very low-grade metamorphism, whereas chemical processes are favored at higher grades. The Michigamme samples show that improvement of preferred orientation occurrred by grain dissolution and crystallization. Noncleavage-parallel phyllosilicate grains were preferentially dissolved, probably facilitated by internal strain energy from mineral defects, aided by chemical energy, whereas cleavage-parallel phyllosilicates were hosts for new growth along their basal planes. These results show that significant fabric strengthening can be achieved by grain dissolution and crystallization in the absence of tectonic stress.  相似文献   

8.
Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks.  相似文献   

9.
The calcite-quartz bodies which occur in the Upper Wenlock slaty succession of Llangollen have a distinctive fabric of platy calcite crystals and coarse, sometimes euhedral, quartz. The calcite internal deformation lamellae and folds and boudins formed in the bodies during the production of the folds and cleavage of the country rock are described together with the recrystallization fabrics of some of the calcite. Note is made of similar rocks from Ribblesdale and Coniston and their origin discussed.  相似文献   

10.
Low grade metasediments and metavolcanics of the Hill End Synclinorial Zone within the Rockley district, NSW have experienced two phases of macroscopic folding (D1 and D2), both of which are post‐latest Silurian in age. No hiatus is evident between D1 and D2. D1 produced large Fi folds (λ/2 usually > 2 km) lacking mesoscopic elements and having variable axial trends. D2 was associated with the development of regional slaty cleavage (S2) and mesoscopic folds which are parasitic on plunging macroscopic F2 folds (λ/2=0.4–2 km). D2 strain is variable, being most intense in the north of the district where slaty cleavage and tight mesoscopic F2 folds are well developed, and weakest in the south where mesoscopic folds are absent or usually gentle and cleavage is often feebly developed even in mica‐rich rocks, which are stratigraphic equivalents to slates and schists in the north. The F1 fold mechanism may involve multiple folding, simultaneous folding in more than one direction, or complex buckling of layers of variable thickness. D1 and D2 are tentatively correlated with folding events elsewhere in the Hill End Synclinorial Zone.  相似文献   

11.
 The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism. Received: 11 May 1998 / Accepted: 19 January 1999  相似文献   

12.
In low grade, biotite-rich metasiltstones and slates from the western side of Fleurieu Peninsula, the slaty cleavage is defined by elongate deformed old biotites and by the coincident elongate dimensions and (001) planes of thin, well aligned new biotites. Histograms of frequency versus (001)-S1 angle (S1 defined by aligned thin muscovite used as the reference plane) were determined in thin section for both populations. The old biotites show a symmetrical bimodal distribution of (001) about S1, with maxima at around 20° either side ofS1. This distribution, together with the preserved intracrystalline strain, indicates that these old grains deformed largely by slip on (001) with some modification of grain boundaries by diffusive transfer. The new biotite grains are very well aligned (standard deviation 3.8°) and show no sign of mechanical deformation. They have not been mechanically rotated into alignment but must have nucleated and grown in a specific orientation. The proportion of new to old grains increases with metamorphic grade, causing a rapid strengthening of the crystallographic alignment. In slates and phyllites with similar microstructure, the mica fabric determined by X-ray texture goniometry cannot be used as a quantitative measure of the geometry and magnitude of the bulk strain, as the intensity of the crystallographic fabric will be strongly influenced by the proportion of new mica, which is itself greatly affected by the metamorphic grade during slaty cleavage formation.  相似文献   

13.
Alastair Beach 《Lithos》1979,12(1):51-58
The most widespread record that terrigenous sedimentary rocks have deformed by a pressure solution mechanism is seen in the development of spaced cleavages and transposition structures under conditions of low grade metamorphism. Such structures are most common in immature sandstones and siltstones. Mineral reactions, involving modification of detrital grains and diagenetic minerals, and forming a logical extension to diagenetic processes, are an integral part of the deformation mechanism, and the cleavage stripes represent accumulations not just of inert particles, but mostly of newly crystallized micas, the products of these reactions. The mechanism of deformation by pressure solution is now seen to involve mmetamorphic reactions, change in volume of solid phases during reaction, removal of some silica from the rock, rearrangement of reaction products to produce fabrics, solution of some detrital grains in cleavage stripes.Formal reactions have been written to describe the alteration of detrital felspar and epidote to white mica, the modification of greywacke matrix to white mica, and the transformation of diagenetic chlorite to white mica, all of which are observed to occur during formation of the pressure solution cleavages. These reactions emphasize the importance of metamorphic processes during pressure solution deformation, suggest that pressure solution may involve removal of silica released as a product of the reactions, indicate that the pH of the aqueous phase may be buffered to a level that silica solubility is increased, involve a volume reduction that contributes to the overall shortening during deformation, and also involve dehydration, the large scale circulation of released water possibly being important to the removal and redistribution of silica during pressure solution.  相似文献   

14.
Serpentinite/talc‐matrix mélanges, bearing blocks of blueschist metavolcanics, occur within the Heathcote and Governor Fault Zones of the southern Lachlan Orogen. In the Heathcote Fault Zone, serpentinite‐matrix mélange consists of blocks or small pods of boninite, andesite, ultramafic rocks, chert and volcanogenic sandstone variably metamorphosed to prehnite‐pumpellyite, greenschist, or greenschist to blueschist facies. In the Governor Fault Zone, blueschist metavolcanics occur as blocks within serpentinite/talc matrix that is interleaved with prehnite‐pumpellyite to greenschist facies, intermediate pressure slate and phyllite. Ar/Ar dating of white mica from slaty mud‐matrix (broken formation) indicates that the main fabric development occurred at 446 ± 2 Ma. U–Pb (SHRIMP) dating of titanite from blueschists in the Governor Fault Zone indicates that metamorphism occurred at approximately 450 Ma, close to the time of mélange formation. Previously published, Ar/Ar dating of white mica from phyllite and biotite from metadiorite in the Heathcote Fault Zone suggest that blueschist metamorphism occurred at a similar time. These ages are supported by field relationships. Illite crystallinity and b0 data from white mica, and the preservation of blueschist blocks indicate that these fault zones maintained low temperatures both during and after intermediate‐ to high‐pressure metamorphism. Occurrences of blueschists in the Arthur Lineament of the Tyennan (Delamerian) Orogen in Tasmania, and in the New England Orogen, have different ages, and in conjunction with the occurrences described here, suggest that subduction‐accretion processes contributed significantly to the development of the Tasmanides from Cambrian through to Carboniferous times.  相似文献   

15.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

16.
A joint magnetic and mica fabric study has been carried out on rocks from recognised shear zones in Galicia (Spain). The two main aims of the study are to determine strain gradients in a foliated material without any significant strain markers and to obtain a quantitative relationship between the magnetic susceptibility anisotropy ellipsoid and the mica fabric axes. The intensity parameters of the fabric on profiles intersecting the studied areas indicate the dominant influence of two major shear zones on the fabric development. The regional fabric shows less significant variations across minor (less developed) shear zones.The empirical relationship between magnetic fabric and strain reported by Rathore (1979, 1980) and Rathore and Henry (1982) is found to hold in the magnetic and mica fabrics comparison. The relationship found in this study is:  相似文献   

17.
The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.  相似文献   

18.
Study of a thick section of late Paleozoic to mid-Cretaceous sedimentary and volcanogenic rocks in eastcentral Sierra Nevada has revealed an involved structural succession not readily apparent when analysed under the traditional assumptions of structural analysis (e.g. parallel structures are of the same age).Earliest structures in the area occur as sparse folds in late Paleozoic rocks, whereas in Triassic to mid-Cretaceous rocks earliest structures occur as penecontemporaneous slumps. Upon these earliest structures are superimposed slaty cleavage with associated lineations and subsequent crenulations. The slaty cleavage across the area is statistically parallel, as are the axial planes of crenulations which fold the slaty cleavage. Such a succession would traditionally be interpreted as representing two periods of deformation, the first forming the slaty cleavage and the second the crenulation of the slaty cleavage. There is evidence, however, to indicate that the slaty cleavage itself was formed during more than one period of deformation and the same may be true for the crenulations. Dykes emplaced in Jurassic rocks have been dated (U/Pb) as mid-Cretaceous and lie parallel to what is probably an early slaty cleavage direction. The dykes, however, also bear a slaty cleavage, albeit weaker than in the host rock. In addition, quantitative strain determinations of rocks in the area show that the older units are more strongly deformed than the younger units. These and other data suggest that the statistically parallel slaty cleavage and related structures (folds, lineations, etc.) found in the Jurassic and older rocks have formed during at least two, and possibly three, increments of strain, each increment separated by a lengthy period of geologic time, possibly as much as 45 Ma or more. Crenulations of the slaty cleavage at any point (subsequently formed after each period of slaty cleavage formation) may even predate slaty cleavage formed later at another nearby point.While it is possible to set up a chronology between earlier (tectonic and/or penecontemporaneous slumps) and later structures (slaty cleavage, folds, lineations, etc.), it is not valid to designate for the entire area a relative time sequence of formation of slaty cleavage and crenulations in the Jurassic or older rocks by the usual methods (e.g. S2, S3, F2, F3, etc.). These later structures can only be designated as Only in the youngest stratigraphic unit in the area, which has been subjected to one deformation (mid-Cretaceous), can a valid structural succession be applied areally.We suggest that multiphase, parallel structures, comparable to those we have described, may be a relatively common phenomenon in orogenic belts. Until one arrives at a thorough understanding of the detailed stratigraphy and the absolute ages of units in key relationships to the structures, it may only be possible to delineate the broadest of time sequences for the structures concerned.  相似文献   

19.
K‐Ar ages of biotite and hornblende from undeformed granodiorite plutons and of slaty and phyllitic rocks, ranging from prehnite‐pumpellyite metagreywacke to greenschist fades, have been determined in an attempt to define the age of orogenesis in the eastern part of the Nambucca Slate Belt. The plutons have K‐Ar ages of 226–227 m.y. (biotite) and 228–231 m.y. (hornblende) that provide a younger age limit for deformation. The lower grade metamorphic rocks yield a range of ages including some comparable with the depositional age of the rocks as indicated by fossils. Rocks of pumpellyite‐actinolite and greenschist facies give a more coherent group of ages which suggest orogenesis at about 250–255 m.y. Specimens of these latter rocks that have been affected by a later structural episode than that during which slaty cleavage formed, yield slightly older ages, which may result from the inclusion of minor amounts of environmental excess 40Ar.

Support for the 250–255 m.y. age comes from previously determined radiometric ages from the western part of the Slate Belt, although the presence of granitic bodies perhaps as old as 289 m.y., some closely associated with high‐grade regional metamorphic rocks, may indicate the presence of additional earlier orogenic movements in this region.  相似文献   

20.
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号