首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

2.
We report the discovery of PSR J1753−2240 in the Parkes Multibeam Pulsar Survey data base. This 95-ms pulsar is in an eccentric binary system with a 13.6-d orbital period. Period derivative measurements imply a characteristic age in excess of 1 Gyr, suggesting that the pulsar has undergone an episode of accretion-induced spin-up. The eccentricity and spin period are indicative of the companion being a second neutron star, so that the system is similar to that of PSR J1811−1736, although other companion types cannot be ruled out at this time. The companion mass is constrained by geometry to lie above 0.48 solar masses, although long-term timing observations will give additional constraints. If the companion is a white dwarf or a main-sequence star, optical observations may yield a direct detection of the companion. If the system is indeed one of the few known double neutron star systems, it would lie significantly far from the recently proposed spin-period/eccentricity relationship.  相似文献   

3.
We report on the discovery of a binary pulsar, PSR J1740−3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350 kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11 M. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045−7319.  相似文献   

4.
利用中国科学院国家授时中心昊平观测站40m射电望远镜, 在L波段对Vela脉冲星(PSR J0835-4510)进行了单个脉冲观测研究. 在56min的观测数据中, 共观测到38040个单脉冲. 探测到观测时间内辐射的所有单脉冲信号, 其中单脉冲的半峰线宽(half-maximum line width, $W_{50  相似文献   

5.
We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z , age log(t)=8.95, distance modulus (m - M)0 = 10.34 and reddening value E(B -V) = 0.55 mag.  相似文献   

6.
G328 = A65 = L3314 (V = 13.83, B-V = 1.91) is a field star in the direction of the globular cluster M4. If we take E(B - V) = 0.40, then its (B - V)0 = 1.51, corresponding to a spectral type of K5III if it is a giant star; or of dM2 if it is a dwarf. Observations at both the MSSSO and Yunnan Observatory have shown that G328 is a new variable with peak to peak amplitude - 0.05 mag in V. While it is not unusual for so red a star to be a variable, special attention must be paid to its short period of about one day. If the variability is due to pulsation, the spectral type and luminosity as well as effective temperature should be determined in order to compare it with Xiong's theory.  相似文献   

7.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

8.
Efforts are made to understand the timing behaviors (e.g., the jumps in the projected pulsar semimajor axis at the periastron passages) observed in the 13-year monitoring of PSR B1259-63. Planet-like objects are suggested to orbit around the Be star, which may gravitationally perturb the (probably low mass) pulsar when it passes through periastron. An accretion disk should exist outside the pulsar's light cylinder, which creates a spindown torque on the pulsar due to the propeller effect. The observed negative braking index and the discrepant timing residuals close to periastron could be related to the existence of a disk with a varying accretion rate. A speculation is presented that the accretion rate may increase on a long timescale in order to explain the negative braking index.  相似文献   

9.
CCD photometry data of the T Tauri star H 187 are presented. They show that a new eclipse of this star began at the end of 2004. Since only one eclipse of this star has been observed previously with a duration of 3.5 years, our data indicate that the eclipses of this object are periodic with a period P=4.9 years between eclipses. Thus, in terms of the absolute duration of the eclipses and in terms of their relative length as a fraction of the period, H 187 is one of the most exotic objects in the sky. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 529–534 (November 2005).  相似文献   

10.
New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21-cm H  i -line emission and continuum emission data from the Southern Galactic Plane Survey. SNR G351.7+0.8 has a flux density of 8.4 ± 0.7 Jy at 1420 MHz. Its spectral index is 0.52 ± 0.25 ( S = v −α) between 1420 and 843 MHz, typical of adiabatically expanding shell-like remnants. H  i observations show structures possibly associated with the SNR in the radial velocity range of −10 to −18 km s−1, and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than  6.8×104 yr  . A young radio pulsar PSR J1721−3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721−3532. There is an unidentified, faint X-ray point source 1RXS J172055.3−353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8.  相似文献   

11.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

12.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

13.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

14.
The equilibrium composition of neutron star matter is achieved through weak interactions (direct and inverse beta decays), which proceed on relatively long time scales. If the density of a matter element is perturbed, it will relax to the new chemical equilibrium through non-equilibrium reactions, which produce entropy that is partly released through neutrino emission, while a similar fraction heats the matter and is eventually radiated as thermal photons. We examined two possible mechanisms causing such density perturbations: (1) the reduction in centrifugal force caused by spin-down (particularly in millisecond pulsars), leading to rotochemical heating, and (2) a hypothetical time-variation of the gravitational constant, as predicted by some theories of gravity and current cosmological models, leading to gravitochemical heating. If only slow weak interactions are allowed in the neutron star (modified Urca reactions, with or without Cooper pairing), rotochemical heating can account for the observed ultraviolet emission from the closest millisecond pulsar, PSR J0437-4715, which also provides a constraint on |dG/dt| of the same order as the best available in the literature. This work made use of NASA’s Astrophysics Data System Service, and received financial support from FONDECYT through regular grants 1020840 and 1060644.  相似文献   

15.
The initial period of a pulsar is an important factor in our understanding of the formation of neutron stars and of the nature of the equation of state of neutron star matter.Up to now this quantity can only be obtained for a few pulsars for which accurate age and braking index are known.Based on the theory of the offcenter dipole emission,in which pulsars obtain theiry high velocities depending on the initial periods,we calculate the initial period using the proper motion data,Because the orbital velocity of the progenitor and asymmetric kick in the supernova explosion may also contribute to the observed velocity of the pusar,the derived values of initial periods are lower limits.For normal pulsars,the initial periods are in the range of 0.6~2.6ms.For the millisecond pulsars,the initial periods are comparable to their current periods,and the ratio between the initial period and the current period increases with the decrease of the current period.For PSR B1937 21 with the shortest period of 1.56ms,the ratio is 0.77.  相似文献   

16.
We have detected the rare phenomenon of stable, drifting sub-pulse behaviour in two pulsars discovered in the recent Swinburne intermediate latitude pulsar survey. The pulsars, PSR     and PSR J1919+0134, have approximate periods ( P ) of 1.873 and 1.6039 s respectively.
Both pulsars have multicomponent profiles, and distinct drifting is observed across them. We have identified a single drift mode in both pulsars: the drift rate for PSR     being 5.4(1) ms P −1 and 5.8(2) ms P −1 for PSR 1919+0134. The drifting is linear across the profile with no departure from linearity at the edges within the sensitivity of our observations.  相似文献   

17.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

18.
We develop a numerical code for simulating the magnetospheres of millisecond pulsars, which are expected to have unscreened electric potentials due to the lack of magnetic pair production. We incorporate General Relativistic (GR) expressions for the electric field and charge density and include curvature radiation (CR) due to primary electrons accelerated above the stellar surface, whereas inverse Compton scattering (ICS) of thermal X-ray photons by these electrons are neglected as a second-order effect. We apply the model to PSR J0437-4715, a prime candidate for testing the GR-Electrodynamic theory, and find that the curvature radiation spectrum cuts off at energies below 15 GeV, which are well below the threshold of the H.E.S.S. telescope, whereas Classical Electrodynamics predict a much higher cutoff near 100 GeV, which should be visible for H.E.S.S., if standard assumed Classical Electrodynamics apply. GR theory also predicts a relatively narrow pulse (2φ L ∼ 0.2 phase width) centered on the magnetic axis, which sets the beaming solid angle to ∼0.5 sr per polar cap (PC) for a magnetic inclination angle of 35 relative to the spin axis, given an observer which sweeps close to the magnetic axis. We also find that EGRET observations above 100 MeV of this pulsar constrain the polar magnetic field strength to B pc < 4× 108 G for a pulsar radius of 10 km and moment of inertia of 1045 g cm2. The field strength constraint becomes even tighter for a larger radius and moment of inertia. Furthermore, a reanalysis of the full EGRET data set of this pulsar, assuming the predicted pulse shape and position, should lead to even tighter constraints on neutron star and GR parameters, up to the point where the GR-derived potential and polar cap current may be questioned.  相似文献   

19.
We report new radial velocity measurements for 30 candidate runaway stars. We revise their age estimates and compute their past trajectories in the Galaxy in order to determine their birthplaces. We find that seven of the stars could be younger than ∼100 Myr, and for five of them we identify multiple young clusters and associations in which they may have formed. For the youngest star in the sample, HIP 9470, we suggest a possible ejection scenario in a supernova event, and also that it may be associated with the young pulsar PSR J0152–1637. Our spectroscopic observations reveal seven of the stars in the sample of 30 to be previously unknown spectroscopic binaries. Orbital solutions for four of them are reported here as well. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
PSR B1259−63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star SS 2883. Unpulsed γ-ray, X-ray and radio emission components are observed from the binary system. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The 2007 periastron passage was observed in unprecedented details with Suzaku , Swift , XMM–Newton and Chandra missions. We present here the results of this campaign and compare them with previous observations. With these data we are able, for the first time, to study the details of the spectral evolution of the source over a 2-month period of the passage of the pulsar close to the Be star. New data confirm the pre-periastron spectral hardening, with the photon index reaching a value smaller than 1.5, observed during a local flux minimum. If the observed X-ray emission is due to the inverse Compton (IC) losses of the 10-MeV electrons, then such a hard spectrum can be a result of Coulomb losses, or can be related to the existence of the low-energy cut-off in the electron spectrum. Alternatively, if the X-ray emission is a synchrotron emission of very high-energy electrons, the observed hard spectrum can be explained if the high-energy electrons are cooled by IC emission in Klein–Nishina regime. Unfortunately, the lack of simultaneous data in the TeV energy band prevents us from making a definite conclusion on the nature of the observed spectral hardening and, therefore, on the origin of the X-ray emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号