首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The river systems observed today is the cumulative result of surface, rill, and gully erosion, and sediment transport, scour, and deposition. The divisions of approach between these two related areas are man-made, and are not based on sound science. Most of the erosion studies are done by geologists and agricultural engineers who are concerned of the surface,  相似文献   

3.
水系分维的构造含义   总被引:1,自引:0,他引:1  
皇甫岗  王海 《地震研究》1990,13(4):389-395
本文运用分数维几何学,研究了河流水系分维与地壳里向运动、活动断裂格局及运动学特征的关联性。结果表明:1)地壳垂向运动控制大型河流主干的总体形态;2)活动断裂格局复杂、水平运动强烈的地区,水系分维值高;3)走滑断裂较斜滑断裂对水系发育的控制强烈,而后者主要起到对水系的分区作用。  相似文献   

4.
滇西北区断层分数维几何学的研究   总被引:5,自引:0,他引:5  
皇甫岗  韩明 《地震地质》1991,13(1):61-66
本文应用分数维几何学的方法,对滇西北区断裂系进行解析并确立了各断裂系的地位;从该区各典型子区活动断裂与水系的几何学分析和对比,探讨了二者的分布特征及其相关性  相似文献   

5.
RIVER PATTERNS AND SPATIAL AND TEMPORAL TRANSFORMATION MODES   总被引:3,自引:0,他引:3  
1 INTRODUCTIONThe river pattCths and transfo~ion of the pattenes are of great significance for flood control andmanagement of navigation system. Vallous spatial and temporal modes have been reported in theprevious stUdies. These modes depend on certain controlling factors and occur with different frequencies.These factors are related to modem fluvial processes and ancient sedimentary consequences. T'hedifferent river patterns, depending on the factors, can be either observed in nature or…  相似文献   

6.
7.
This article reports on the special issue of Earth Surface Processes and Landforms dedicated to remote sensing of rivers. This emerging subdiscipline of river science has grown at a rapid rate in recent years because of: (a) the growing desire and need for data to document and explore the full range of spatial and temporal variations in river systems; (b) evolving technologies that enable lower cost data acquisition, processing and analysis at reach to catchment to continental scales; and (c) the increasing engagement of river scientists with GIScience. The convergence of these factors and the ever growing number of practitioners speaks to the need for more communication among researchers, a major reason for creating this special issue. The 12 articles in the volume cover a broad spectrum of applications that use a variety of platforms and sensors, ranging from photogrammetric mapping of riffle‐pool morphology beneath forest canopy using a camera mounted on a hand held pole to satellite‐based synthetic radar mapping of subcontinental scale hydrology of large rivers. In this overview each of the 12 articles is briefly summarized. Based on these works and other research, it is concluded that the time for more widespread application of river remote sensing techniques is now. To promote more widespread use of remote sensing techniques for river science and management, the following are advocated: (a) developing stand alone or plug‐in software products that enable non‐expert users to implement these new methods, (b) incorporating remote sensing of rivers training into classes, workshops, and on‐line tutorials; and (c) promoting more intentional and formal collaboration among members of the river remote sensing community. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
1INTRODUCTIONTheYellowRiverisadreamtoserioushydraulicengineerswholovechallenge.Historically,theriveristhe"sorrowofChina."Itisalsooneofthefirstriverssubjecttoscientificmodelingattheearlystageofdevelopmentofphysicalscalemodels.ThecontroversyearlythiscenturybetweenthemodelresultsofHubertEngels(1854-1945)andthoseofOt-toFranzius(1878-1936)effectivelydelayedtheChinesegovernment'sdecisiononhowtheriverwastoberegUlatedwithlevees.ChinahasalonghistoryofobservingandregulatingtheYellowRiver.There…  相似文献   

9.
Principal-Component Method is used to identify the major factors governing the long-term variations of water chemistry in the transboundary rivers of Selenga and Kiran. Their preliminary interpretation was made. Water chemistry formation in both large (Selenga) and small (Kiran) rivers is shown to be mostly governed by natural-climatic factors. Thus, an increase in water abundance has a dual effect on water chemistry: on the one hand, water is enriched with substances increasingly entering it because of the more intense erosion and dissolution of solid rocks, and, on the other hand, the concentrations of chemicals of anthropogenic origin decrease because of their greater dilution. A conclusion was made regarding a relationship between a positive trend in water temperature and an increase in the concentration of chlorine ion in water. A preliminary estimate is given to the effect of municipal and industrial wastes, as well as surface and subsurface waters of various genesis on long-term variations of river water chemistry. Trends in changes in water chemistry were studied by using approximations of long-term series of the variables that determine the interpretation of principal factors with the help of a slow trend by “caterpillar” method.  相似文献   

10.
Freshwater systems have increasingly been subjected to a multitude of human pressures and the re-establishment of their ecological integrity is currently a major worldwide challenge. Expected future climate and socioeconomic changes will most probably further exacerbate such challenges. Modelling techniques may provide useful tools to help facing these demands, but their use is still limited within ecological quality assessment of water resources due to its technical complexity.We developed a Bayesian Belief Network (BBN) framework for modelling the ecological quality of rivers and streams in two European river basins located in two distinct European climatic regions: the Odense Fjord basin (Denmark) and the Sorraia basin (Portugal). This method enabled us to integrate different data sources into a single framework to model the effect of multiple stressors on several biological indicators of river water quality and, subsequently, on their ecological status. The BBN provided a simple interactive user interface with which we simulated combined climate and socioeconomic changes scenarios to assess their impacts on river ecological status.According to the resulting BBNs the scenarios demonstrated small impacts of climate and socioeconomic changes on the biological quality elements analysed. This yield a final ecological status similar to the baseline in the Odense case, and slightly worse in Sorraia. Since the present situation already depicts a high percentage of rivers and streams with moderate or worse ecological status in both basins, this means that many of them would not fulfil the Water Framework Directive target in the future. Results also showed that macrophytes and fish indices were mainly responsible for a non-desirable overall ecological status in Odense and Sorraia, respectively. The approach followed in this study is novel, since BBN modelling is used for the first time for assessing the ecological status of rivers and streams under future scenarios, using an ensemble of biological quality elements. An important advantage of this tool is that it may easily be updated with new knowledge on the nature of relationships already established in the BBN or even by introducing new causal links. By encompassing two case studies of very different characteristics, these BBN may be more easily adapted as decision-making tools for water management of other river basins.  相似文献   

11.
1 INTRODUCTION Amongthediversityofexistingriverchannelprocesses,meanderingisthemostcommonandfrequentone.Itistypicallythecommon?..  相似文献   

12.
The cumulative probability distributions for stream order, stream length, contributing area, and energy dissipation per unit length of channel are derived, for an ordered drainage system, from Horton's laws of network composition. It is shown how these distributions can be related to the fractal nature of single rivers and river networks. Finally, it is shown that the structure proposed here for these probability distributions is able to fit the observed frequency distributions, and their deviations from straight lines in a log-log plot.  相似文献   

13.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

14.
Quantifying geomorphic conditions that impact riverine ecosystems is critical in river management due to degraded riverine habitat, changing flow and thermal conditions, and increasing anthropogenic pressure. Geomorphic complexity at different scales directly impacts habitat heterogeneity and affects aquatic biodiversity resilience. Here we showed that the combination of continuous spatial survey at high resolution, topobathymetric light detection and ranging (LiDAR), and continuous wavelet analysis can help identify and characterize that complexity. We used a continuous wavelet analysis on 1-m resolution topobathymetry in three rivers in the Salmon River Basin, Idaho (USA), to identify different scales of topographic variability and the potential effects of this variability on salmonid redd site selection. On each river, wavelet scales characterized the topographic variability by portraying repeating patterns in the longitudinal profile. We found three major representative spatial wavelet scales of topographic variability in each river: a small wavelet scale associated with local morphology such as pools and riffles, a mid-wavelet scale that identified larger channel unit features, and a large wavelet scale related to valley-scale controls. The small wavelet scale was used to identify pools and riffles along the entire lengths of each river as well as areas with differing riffle-pool development. Areas along the rivers with high local topographic variability (high wavelet power) at all wavelet scales contained the largest features (i.e., deepest or longest pools) in the systems. By comparing the wavelet power for each wavelet scale to Chinook salmon redd locations, we found that higher small-scale wavelet power, which is related to pool-riffle topography, is important for redd site selection. The continuous wavelet methodology objectively identified scales of topographic variability present in these rivers, performed efficient channel-unit identification, and provided geomorphic assessment without laborious field surveys.  相似文献   

15.
We present the extension of a deterministic fractal geometric procedure aimed at representing the complexity of patterns encountered in environmental applications. The procedure, which is based on transformations of multifractal distributions via fractal functions, is extended through the introduction of nonlinear perturbations in the generating iterated linear maps. We demonstrate, by means of various simulations based on changes in parameters, that the nonlinear perturbations generate yet a richer collection of interesting patterns, as reflected by their overall shapes and their statistical and multifractal properties. It is shown that the nonlinear extensions yield structures that closely resemble complex hydrologic spatio-temporal datasets, such as rainfall and runoff time series, and width-functions of river networks. The implications of this nonlinear approach for environmental modeling and prediction are discussed.  相似文献   

16.
A geomorphological study at the confluence of the Danube and the Isar in Bavaria required long series of daily discharges in both rivers. A model that generates simultaneous correlated streamflows in both rivers was developed and tested. The model is a modified shot noise model, first developed by Treiber (1975) for a single river, that was adapted to two rivers. It generates correlated pulses of events that produce flow for each river, and these pulses are then convoluted with a river specific systems function. The model, after being calibrated for the two rivers on the basis of 85 years of records, yields artificial series of discharges, in which the statistical properties of the historical records are reproduced. The performance of the model was tested with 20 generated series each 100 years long.  相似文献   

17.
A geomorphological study at the confluence of the Danube and the Isar in Bavaria required long series of daily discharges in both rivers. A model that generates simultaneous correlated streamflows in both rivers was developed and tested. The model is a modified shot noise model, first developed by Treiber (1975) for a single river, that was adapted to two rivers. It generates correlated pulses of events that produce flow for each river, and these pulses are then convoluted with a river specific systems function. The model, after being calibrated for the two rivers on the basis of 85 years of records, yields artificial series of discharges, in which the statistical properties of the historical records are reproduced. The performance of the model was tested with 20 generated series each 100 years long.  相似文献   

18.
The rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we review research investigating past, present and future fluvial corridor conditions and processes using remote sensing and we consider emerging challenges facing fluvial and riparian research. We introduce a suite of remote sensing methods designed to diagnose river changes at reach to regional scales. We then focus on identification of channel patterns and acting processes from satellite, airborne or ground acquisitions. These techniques range from grain scales to landform scales, and from real time scales to inter-annual scales. We discuss how remote sensing data can now be coupled to catchment scale models that simulate sediment transfer within connected river networks. We also consider future opportunities in terms of datasets and other resources which are likely to impact river management and monitoring at the global scale. We conclude with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Pressures on braided river systems in New Zealand are increasing due to anthropogenic stresses such as demand for irrigation water, braidplain conversion to farmland and invasive vegetation, as well as extreme natural events associated with earthquakes and climate change. These pressures create issues around preserving braided river physical environments and associated ecosystems, and managing hazards such as floods, aggradation and erosion. A need for more robust understanding and quantification of braided river morphodynamic processes underpins many of these issues. Here, we present eight morphodynamic research challenges to service this need. The first four research challenges relate to managing aggradation-related flooding hazards; the last four address issues stem largely from recent dairy expansion, which has created huge pressure to take land and irrigation water from the alp-fed braided rivers and to alter flow regimes at their mouths. Hāpua, the freshwater lagoons found where most braided rivers meet the coast, show complex morphodynamic behaviour in response to the interplay of river and coastal processes, and their special ecosystems are sensitive to river flow and sediment load changes. We discuss how physical laboratory experiments and novel numerical modelling can help to understand the morphological processes braided rivers undergo, and we show how those research advances could inform planning and legal decisions to regulate land rights and irrigation water allocation on New Zealand's braidplains. We illustrate these environmental and engineering issues and research challenges with examples from the Kowhai, Waiho, Waiau, Rangitata and Hurunui Rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Glacier retreat leads to changes in channel pattern during deglaciation, in response to changing water, sediment and base level controls. Recent ongoing retreat at Skaftafellsjökull, Iceland (c. 50 m per year since 1998) has resulted in the formation of a sequence of river terraces, and several changes in river channel pattern. This paper compares widely used models of river channel pattern against the changes observed at Skaftafellsjökull. Doing this reveals the role of topographic forcing in determining proglacial channel pattern, whilst examining the predictive power and limitations of the various approaches to classifying river channels. Topography was found to play a large role in determining channel pattern in proglacial environments for two reasons: firstly, glacier retreat forces rivers to flow through confined moraine reaches. In these reaches, channels which theory predicts should be braided are forced to adopt a single channel. Secondly, proximal incision of proglacial rivers, accompanied by downstream aggradation, leads to changes in slope which force the river to cross channel pattern thresholds. The findings of this work indicate that in the short term, the majority of channel pattern change in proglacial rivers is due to topographic forcing, and that changes due to changing hydrology and sediment supply are initially relatively minor, although likely to increase in significance as deglaciation progresses. These findings have implications for palaeohydraulic studies, where changes in proglacial channel pattern are frequently interpreted as being due to changes in water or sediment supply. This paper shows that channel pattern can change at timescales faster than hydrological or sediment budget changes usually occur, in association with relatively minor changes in glacier mass balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号