首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between the seafloor electric field and the surface magnetic field is studied. It is assumed that the fields are created by a 2-D ionospheric current distribution resulting in the E-polarization. The layered earth below the sea water is characterized by a surface impedance. The electric field at the seafloor can be expressed either as an inverse Fourier transform integral over the wavenumber or as a spatial convolution integral. In both integrals the surface magnetic field is multiplied by a function that depends on the depth and conductivity of the sea water and on the properties of the basement. The fact that surface magnetic data are usually available on land, not at the sea surface, is also considered. Test computations demonstrate that the numerical inaccuracies involved in the convolution method are negligible. The theoretical equations are applied to calculate the seafloor electric fields due to an ionospheric line current or associated with real magnetic data collected by the IMAGE magnetometer array in northern Europe. Two different sea depths are considered: 100 m (the continental shelf) and 5 km (the deep ocean). It is seen that the dependence of the electric field on the oscillation period is weaker in the 5 km case than for 100 m.  相似文献   

2.
Summary. We have analysed a thirty-six day recording of the natural electric and magnetic field variations obtained on the deep ocean floor north-east of Hawaii. The electromagnetic fields are dominated by tides which have an appreciable oceanic component, especially in the east electric and north magnetic components. The techniques of data analysis included singular value decomposition (SVD) to remove uncorrelated noise. There are three degrees of freedom in the data set for periods longer than five hours, indicating a correlation of the vertical magnetic field and the horizontal components, suggesting source field inhomogeneity. Tensor response functions were calculated using spectral band averaging with both SVD and least squares techniques and rotated to the principal direction. One diagonal component, determined mainly by the north electric and east magnetic fields, is not interpretable as a one-dimensional induction phenomenon. The other diagonal term of the response function indicates a rapid rise in conductivity to 0.05 mho m−1 near 160 km. No decrease in conductivity below this depth is resolvable. Polarization analysis of the magnetic field indicates moving source fields with a wavelength near 5000 km. Model studies suggest that the two dimensionality in the response function may be caused by motion in the ionospheric current system.  相似文献   

3.
A polar magnetic substorm on 1974 September 11 was recorded by a two-dimensional array of 25 three-component magnetometers, so located that the westward ionospheric current passed over the array. The mean perturbation fields over five-minute intervals are presented at six representative epochs of the substorm, the first just before its onset and the sixth 21/2 hr later in the coda of the event. At four of the resulting 'time frames', the perturbation fields have been fitted, on a least-squares criterion, by calculated fields of three-dimensional current loops having downward field-aligned current at the east end of the ionospheric westward current, upward field-aligned current at the west end and closure in the magnetotail. The current density was constant across the width of each of these model currents. In three of the four time frames it proved necessary to introduce a bend to the northwest in the ionospheric current; this bend occurred within 27° (geomagnetic) west of geomagnetic midnight. An association with the Harang discontinuity is possible. The field-aligned current nearer to the array (in one time-frame the downward, east-end current, in two others the upward current at the west end) proved essential to secure any reasonable fit to the data. The ionospheric segment of the current loop moved at least 20° of longitude eastward, relative to the surface of the earth, between 07.48 and 08.58 UT. In this 70-min period the ionospheric segment moved at least 38° eastward relative to magnetic midnight.  相似文献   

4.
Summary. If one can measure the anomalous horizontal magnetic field associated with a (locally bounded) two-dimensional conductivity anomaly, the transfer function which results from correlating the vertical with the anomalous horizontal magnetic field directly indicates the depth to an equivalent line-current. A. numerical model can be used to illustrate this. If three-dimensional effects (including current channelling) produce the current anomaly, interpretation in terms of conductive structure would be less clear. It has been claimed (Babour & Mosnier etc.) that such three-dimensional effects are experimentally observed in the highly coherent transfer functions determined from differential geomagnetic sounding experiments. These effects are, specifically, the 'linear polarization' of the anomalous fields, and the invariance of the phase of the measured anomalous field across the anomaly. It is suggested in this present paper that both these effects can be explained in terms of simple local induction models.
If the embedded two-dimensional anomaly is sufficiently close to the Earth's surface, the transfer function (between the vertical and the total horizontal field) contains more information than is usually interpreted. With this in mind, the magnetovariational data collected by Rooney & Hutton in the Kenyan Rift is re-examined.  相似文献   

5.
Summary. The paper reports studies of the three-dimensional magnetospheric—ionospheric current systems which produced polar magnetic substorms on 1974 September 7 and September 18. The data were magnetic perturbation fields observed with a two-dimensional array of 23 three-component magnetometers located in western Canada beneath the auroral oval. In an earlier study of a substorm of September 11 (Bannister & Gough) the fields fitted calculated field for a Boström Type 1 current loop with field-aligned currents at east and west ends of the ionospheric segment, and with uniform current density across the width. The substorms here reported could not be modelled with uniform current density. An inverse method due to Oldenburg was therefore used to estimate current density distributions, and satisfactory fits of calculated to observed field resulted. Each substorm was modelled at six representative epochs. In general the principal ionospheric current seem by the array was westward. At four epochs of the September 7 substorm and throughout the September 18 substorm, significant eastward ionospheric current (or its equivalent in terms of the fields produced) was observed north of the westward electrojet. Northwestward bends in the ionospheric current segments were found at four epochs on September 7 and at three epochs on September 18. As in the September 11 substorm (Paper 1), these bends were either west of or close to magnetic midnight. In some cases the bends may follow the auroral oval, but in others they are sharper and may be associated with the Harang discontinuity. East of geomagnetic the ionospheric currents tend to run in a constant geomagnetic midnight latitude range. The developments of the three substorms, of September 7, 11 (Paper 1) and 18, are compared. They showed a variety of shifts in longitude, though all moved eastward relative to magnetic midnight.  相似文献   

6.
Magnetic history of a dyke on Mount Etna (Sicily)   总被引:1,自引:0,他引:1  
During the 1989 eruption of Mount Etna, two fracture systems, trending c. N45°E and N150°E, opened at the foot of its 3000 m high SE Crater and propagated quickly downslope to distances of ≈3 and 7 km, respectively. The northeastern fracture fed a flank eruption, whereas the southeastern fracture remained dry and offered contrasting volcanological and geophysical evidence of the presence of magma at a shallow depth. During the opening of this non-eruptive fracture system, a differential magnetic network was set up on a short profile across its distant extremity. Initially, the magnetic field did not display any change along the profile between frequent surveys. However, repeated measurements at intervals of about 3 months for two years revealed the slow build-up of a 130 nT anomaly. The anomaly vanishes laterally within 0.2 km of the surface expression of the fracture system. This exceptional set of observations constrains the location and time of cooling of a shallow dyke. The increase in magnetization of the dyke inferred by the rate of growth of the anomaly leads to the interpretation that the dyke was emplaced near the end of the eruption.  相似文献   

7.
Summary. An order 4, degree 12 spherical harmonic analysis of the smoothed quiet geomagnetic daily variations was used to separate the external and internal geomagnetic S q field at North American locations for the quiet-Sun year, 1965. These fields were represented by a month-by-month display of equivalent current vortex systems with dominant, pre-noon foci. The focus reached 40° latitude near the June solstice and about 30° latitude near the December solstice. The daily range of S q current amplitudes was largest in late July to early August and smallest in mid-December. Semi-annual variations of S q currents dominated only the equatorial region. Daily maxima in mid-latitudes, occurred mostly near local noon in December to February and about 1 hr before noon in June to mid-October. The ratio of external to internal current amplitude vxied from about 1.5 to 1.9 in the middle latitudes with both annual and semiannual changes. An error treatment indicated that the analysis reproduced the form of the surface field with a correlation coefficient of about 0.9 and the amplitudes of the surface field to about 10 per cent of the S q daily range.  相似文献   

8.
Summary. An attempt is made to describe the transient magnetic change caused by a sudden local change of conductivity in the ionosphere. In a rough illustrative model, electric current is taken to be flowing uniformly in a thin plane rigid sheet of uniform isotropic integrated conductivity, I/ϱO e.m.u. A particular type of perturbing current system is defined, and the type of conductivity anomaly which could produce it is derived. It is shown that the problem is equivalent to that of the free decay of the perturbing current system. For a very small change of conductivity, the current system is found to spread radially at a uniform rate, while decaying. The case of a large conductivity anomaly is analysed by a numerical method. It is concluded that effects at a distance would be similar to those produced by a very small change, and that near the anomaly there would be as well, a local decaying current vortex system. It is found in particular, that at a large distance L cm, the magnetic change would commence immediately and reach an extremum after time of order L × 10−6 s.  相似文献   

9.
summary . An ocean-coast model which consists of a uniformly conducting half-space screened by a perfectly conducting half-plane (the model ocean) is studied. On the land the electric field decreases continuously to zero as the coast is approached. The horizontal magnetic field component is found to vary rapidly, but remains finite; the vertical component on the other hand, increases to infinity at the coast. On the surface of the model ocean as well as on the sea floor, electric field and vertical magnetic field are both nil, but the horizontal magnetic field becomes singular as the seashore is approached. This horizontal magnetic field however, is different on the sea floor and at the ocean surface, because the integrated ocean current is finite, even growing to infinity as the shore is approached. The very large ocean currents near the shore act as an extremely long line antenna, which radiates far afield. This antenna feature explains the very long range of the ocean-coast effects observed under E -polarization induction, compared to the corresponding H -polarization effects where no such antenna-like feature occurs. A similarly large difference of ranges can be expected for all shallow structures with large lateral conductivity contrasts. The present study may therefore be of some interest in relation to geomagnetic depth soundings by the inductive and magnetotelluric methods, as well as in understanding the ocean-coast effect known for some time from records of coastal observatories.  相似文献   

10.
徐彤  徐彬  吴健  胡艳莉  许正文 《极地研究》2014,26(3):316-323
"极区电急流天线"辐射依赖于低电离层D/E区背景电急流,而高电离层F区极低频调制加热,可产生抗磁性电流,形成极低频波辐射源。利用电离层F区一维时变加热数值模型,采用全波解算法研究高纬Troms(69.59°N,19.23°E)地区电离层F区极低频调制加热。模拟结果表明,极区高电离层激发的极低频波与极区低电离层激发的结果不同。加热泵波的有效辐射功率(effective radiated power,ERP)、调制频率及电离层背景对极低频波强度有着重要影响。  相似文献   

11.
2000年7月重大太阳事件的极隙区纬度观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
20 0 0年 7月 ,太阳表面发生了一系列的耀斑与日冕物质抛射事件 ,最大耀斑能级达X5 .7/3 B。地球表面发生相应特大磁暴 ,Dst指数最大负偏达 - 3 0 0 n T。中国南极中山站地处极隙区纬度 ,白天位于磁层极隙区 ,夜间位于极盖区 ,以多种高空大气物理观测设备详细记录了该磁暴过程。对有关数据的分析表明 ,高能粒子引起电离层吸收急剧增加 ,测高仪数据两天多信号空白 ,宇宙噪声吸收显著增加 ;地磁 Pc3 /5脉动增加与行星际磁场南向分量密切对应 ,显示行星际磁流体波对激发磁层脉动的贡献 ;磁暴主相期间 ,Pc3 /5脉动大幅度增加 ;极区地磁水平分量随南向行星际磁场变化 ,但滞后近 8小时 ;Dst指数与南向行星际磁场密切相关 ,磁暴受控于高度负偏的南向行星际磁场  相似文献   

12.
Summary. Currents in the 1.28 × 103 km Alaska oil pipeline, induced from the ionospheric, auroral electrojet, were measured at three sites, near Fairbanks, Paxson and Valdez, Alaska, using a gradient configuration of two fluxgate magnetometers. The observed pipeline current magnitudes, which reached 50 A during times of mild geomagnetic activity, displayed a linear relationship with the electric earth potential. Using the induction relationship between the electric and magnetic fields and the typical spectral composition of the geomagnetic field at high latitudes, I obtained a spectral appearance of the current that shows a maximum in the range of 4.5- to 10-min period. Near Fairbanks the pipeline current amplitudes, I (Amperes), could be represented, approximately, by I = 0.65 B x T −0.5, where B x(nT) is the north—south geomagnetic field variation amplitude and T (min) is its apparent period. There is much less pipelines current at the sites south of Fairbanks. A previously established relationship between the local electric field and the planetary geomagnetic activity index, Ap , permitted a prediction of the pipeline current surge amplitudes in the Fairbanks region as approximately I = 5.0 Ap . Current surges larger than 500 A may be expected rather often in the Alaska pipeline during large geomagnetic storms.  相似文献   

13.
Summary. Horizontal and vertical intensity data, obtained between 1957.0 and 1961.0 at 69 observatories, are analysed to determine the worldwide distribution of the annual variation of the geomagnetic field. Only data observed near local midnight are used, to avoid the small, but significant contamination from Sq. Over most of the world the variation is found to be small, with a clear dependence on latitude, but near the poles it is larger and more erratic. The non-polar variation is subjected to spherical harmonic analysis and separated into parts of internal and external origin. The polar variations are shown to be consistent with a north—south oscillation of the mean position of the auroral electrojets during the year. It is suggested that, with the exception of the polar effect, the annual variation is not due to ionospheric currents (as was hitherto believed), but results from an annual variation in the latitude of the ring current.  相似文献   

14.
王慧  华滢  杨冰  马淑英 《极地研究》2011,23(3):178-182
利用DMSP卫星粒子数据,对南北半球20 000多个亚极光区极化流(SAPS)事件进行统计学分析,重点研究SAPS的发生率及其发生位置隧季节和世界时的分布,研究表明:(1)SAPS的发生率有明显的季节和世界时依赖性,主要发生在春秋季节,显示出较强的地磁活动依赖性;(2)SAPS在冬至也较多发生,可能与亚暴过程有关;(3...  相似文献   

15.
Summary. Palaeomagnetic investigations were carried out on nine lava flows around the Dhar region, which constitute the northern part of the Deccan traps. The stability of remanent magnetism of these specimens was analysed by an alternating magnetic field, thermal demagnetization and memory tests. Six flows exhibited characteristic components of magnetization, with a mean direction of D =143°, I =+46° ( K = 107.1, α95=5.5°). This gives a VGP located at 29° N, 67° W (δp=4.5°, δm= 7.0°). The lower site with normal magnetization and the upper five sites with reverse magnetization indicate a geomagnetic field reversal during the initial phases of Deccan volcanism in the Early Tertiary period. A rapid northward migration of about 18° in latitude and a simultaneous anticlockwise rotation of 37° is calculated for the subcontinent.  相似文献   

16.
A study of the variability of the amplitude of Sq at a fixed hour from one day to the next at nine stations from the dip equator to about 22° north of it has produced interesting results. The amplitude and sign of the variability change virtually randomly, making the mean practically zero. The variability occurs at all hours of the day. Its magnitudes in the components D, H and Z have the same diurnal variation, which peaks in the noon period like Sq(H) in low latitudes, and a weak seasonal variation that peaks at the June solstice (local summer). It is demonstrated that changes in the current intensities of the equatorial electrojet (EEJ) and the worldwide part of the Sq (W Sq) current layers have contrasting phases and can sometimes be in antiphase. Indeed, the changes are mostly independent. Inclusion of the magnetic element D revealed that the EEJ current system has not only an east–west but also a north–south component. The study shows that the meridional component of the EEJ current intensity evidenced at the Kodaikanal and Annamalainagar stations is an integral part of the zonal component at Trivandrum. This confirms the results of Rastogi (1996 ) and validates those of Onwumechili (1997 ). The results suggest that ionospheric conductivity mainly controls the magnitude, while the electric field and ultimately winds mainly control the phase and randomness of the day-to-day variability of the hourly amplitudes of Sq . The random component is attributed to local and/or regional atmospheric winds, probably of gravity wave origin.  相似文献   

17.
Summary. From a study of 'abnormal quiet days' (AQDs) along the 0° meridian between 14 and 60° N, it was found (Butcher & Brown) that the minimum in H at stations on the poleward side of the Sq ( H ) focus was formed by a small negative substorm event when the normal Sq ( H ) amplitude was reduced by a superposed northward field.
In this paper we consider both the AQD event and the superposed northward field as a function of longitude and also consider in more detail the latitude variation of the superposed northward field. From such a study it is concluded that: (1) the AQD event is definitely due to a small magnetospheric substorm event; (2) the superposed northward field varies smoothly with longitude falling to zero some 110° from the longitude of its maximum amplitude; (3) the superposed northward field has a variation with geomagnetic latitude tending to zero near 20° and 70°N with a maximum near 55° N in summer and 35° N in winter; (4) there is some evidence that the effect of the IMF penetrates into the mid-latitude E-region and its effect is latitude-dependent. Although the evidence supports the suggestion that the currents responsible for the superposed northward field flow in the E-region no suggestion as to the origin of the driving force of the currents is forthcoming.  相似文献   

18.
Summary. Magnetic variations at high latitudes represent the combination of magnetic perturbations from several different current systems. The relative effects of each of the contributory current systems vary from event to event, resulting in changes in magnetic perturbation patterns in a given local time sector which are a function of several variables, e.g. level of magnetospheric activity, spectrum of precipitating particles responsible for ionospheric conductivity, configuration of interplanetary magnetic field, etc. In this paper we extend the work of Hughes & Rostoker in which the steady state perturbation pattern in each local time sector was established from ground-based meridian line magnetometer data. We shall define the various current systems which contribute to the high-latitude magnetic perturbation pattern and we shall construct the model composite current system which best explains the high-latitude observations in the winter months. We shall discuss changes in this pattern as a function of season and as a function of the configuration of the interplanetary magnetic field. Finally, we shall relate the geometrical configuration of the ionosphere—magnetosphere current flow to the convection of plasma in the magnetosphere.  相似文献   

19.
The Southern Andes differ significantly from the Central Andes with respect to topography and crustal structures and are, from a geophysical point of view, less well known. In order to provide insight into the along-strike segmentation of the Andean mountain belt, an integrated 3-D density model was developed for the area between latitudes 36°S and 42°S. The model is based on geophysical and geological data acquired in the region over the past years and was constructed using forward density modelling. In general, the gravity field of the South American margin is characterized by a relatively continuous positive anomaly along the coastline and the forearc region, and by negative anomalies along the trench and the volcanic arc. However, in the forearc region of the central part of the study area, located just to the south of the epicentre of the largest ever recorded earthquake (Valdivia, 1960), the trench-parallel positive anomaly is disrupted. The forearc gravity anomaly differences thus allow the study area to be divided into three segments, the northern Arauco-Lonquimay, the middle Valdivia-Liquiñe, and the southern Bahía-Mansa-Osorno segment, which are also evident in geology. In the proposed model, the observed negative gravity anomaly in the middle segment is reproduced by an approximately 5 km greater depth to the top of the slab beneath the forearc region. The depth to the slab is, however, dependent upon the density of the upper plate structures. Therefore, both the upper and lower plates and their interaction have a significant impact on the subduction-zone gravity field.  相似文献   

20.
Summary. A zone of concentrated induced electric currents crossing parts of Zimbabwe, Botswana and South West Africa was discovered during a magnetovariational study conducted in 1972. In 1977, a second study was made with 27 recording magnetometers distributed across the width of South West Africa between latitudes 19 and 22°S. Several geomagnetic disturbances were recorded with high recording efficiencies. Three of these time sequences were digitized for analysis. Magnetograms and Fourier transform amplitude and phase maps in the period range 22–128min were used to delineate the westward continuation of the conductive structure revealed by the earlier investigation. The conductive zone runs approximately east-west from the Botswana border (21°E) to 17°E longitude. From here to the Atlantic coast it trends in a NE—SW direction. Anomalous fields, normalized to the horizontal field at a station recording the normal field, were used to obtain maximum depth estimates of around 45 km for the induced currents. Several deep Schlumberger soundings were done over the anomalous zone and the results showed that the conductive structure is, in places, only 3 km from the surface and that it has a resistivity of less than 20 Ωm. The resistivity of the upper crust outside the structure ranges from 5000 to more than 20000 Ωm. Some 14 post-Karoo alkaline igneous complexes occur along the course of the resistivity anomaly. These intrusive complexes represent the youngest igneous activity in the Damara Orogenic Belt and were most probably emplaced along a line of weakness in the lithosphere. The resistivity anomaly would seem to delineate this line of weakness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号