首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formerly, sand dune patterns were investigated mostly by aerial and satellite images, but more recently, geomorphometric analysis based on digital elevation models (DEMs) has become an important approach. In this paper, sand dune patterns of the Grand Erg Oriental (Sahara) are studied using the De Ferranti (2014) DEM, which is a blending of SRTM (Shuttle Radar Topography Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and other elevation datasets. In the Grand Erg Oriental, there are four large-scale dune pattern types with gradual transitions between them and with several subtypes, namely P1, consisting of large, branching linear dunes; P2, a complex pattern including small-size and widely spaced star and dome dunes; P3, a network type created mostly from crescentic dunes; and finally, P4, consisting of large and closely spaced star dunes. The largest dunes with 90–100-m mean height can be found in the southern parts of the Grand Erg Oriental, where P1 and P4 patterns dominate, and these areas are also characterised by the most intensive sand accumulation with 25–30-m equivalent sand thickness. In the present study, we use regression analysis to investigate the functional relationships between sand dune characteristics. Further on, we have elaborated a DEM-based method to delineate dunes and calculate sand volumes and dune orientations. Comparing wind rose data and sand dune axis rose diagrams, it is concluded that in some parts of the Grand Erg Oriental, the present dune types and patterns are in agreement with the actual wind regime, but in other cases, the present dune patterns are at least partially the results of former wind regimes.  相似文献   

2.
The ridge and swale topography of the Middle Atlantic Bight is best developed on the Delaware-Maryland inner shelf. Here sand ridges can be seen in all stages of formation. Several aspects of the ridge field are pertinent to the problem of ridge genesis. The first is ridge morphology. There is a systematic morphologic change from shoreface ridges through nearshore ridges to offshore ridges, which reflects the changing hydraulic regime. As successively more seaward ridges are examined, maximum side slope decreases, the ratio of maximum seaward slope to maximum landward slope decreases, and the cross-sectional area increases. These changes in ridge morphology with depth and distance from shore appear to be equivalent to the morphologic changes experienced by a single ridge during the course of the Holocene transgression. A second aspect is the change in bottom sediment characteristics that accompanies these large-scale morphologic changes. Megaripples, sand waves and mud lenses appear in the troughs between nearshore and offshore ridges. These changes indicate that the storm flows which maintain ridges are less frequently experienced in the deeper sector, and that the role of high-frequency wave surge becomes less important relative to the role of the mean flow component in shaping the sea-floor. A third aspect is the systematic relationship of grain size to topography. Grain size is 90° out of phase with topography, so that the coarsest sand lies between the axis of the landward trough and the ridge crest, while the finest sand lies between the ridge crest and the axis of the seaward trough. This relationship is characteristic of large-scale bedforms. Finally, flow was measured and transport calculated on the same ridge during a one-month period (November 1976). Threshold was exceeded only during storm events. Mean transport was southerly and a little seaward with respect to both the ridge crest and the shoreline. These flow measurements are in conformity with the pattern of smaller bedforms. A 43-year time series of bathymetric change for this ridge reveals a systematic pattern of landward flank erosion, seaward flank deposition, and seaward crest migration. Sand ridges are considered the consequence of constructive feedback between an initial topography and the resulting distribution of bottom shear stress. The relationship between grain size and topography supports this model, but does not account directly for the oblique angle of the ridge with respect to the coastline. This feature may be due to a more rapid alongshore migration rate of the inshore edge of the ridge than the offshore edge, and the relationship between this migration rate, and the rate of shoreface retreat.  相似文献   

3.
High resolution seismic lines from the inner and mid-shelf of the Durban Bight reveal an unprecedented view of the seismic stratigraphy of the central KwaZulu-Natal uppermost continental margin. Seven units are recognised from the shelf on the basis of their stratal architecture and bounding unconformities. These comprise four incompletely preserved sequences consisting of deposits of the highstand systems tract (Unit B), falling stage systems tracts (Unit C), the transgressive systems tract (Units A, D and G) and lowstand systems tracts (early fill of the incised valleys and strike diachronous prograding reflectors of Unit A). Seismic facies recognised as incised valley fills correspond to the lowstand and transgressive systems tracts. When integrated with published accounts of onshore and offshore lithostratigraphy and local sea level curves, we recognise an Early Santonian transgression (Unit A to Unit B), superimposed by uplift-induced pulses of forced regression. A Late Campanian relative sea level fall (Unit C) followed. Sediments of the Tertiary period are not evident on the Durban Bight shelf except for isolated incised valley fills of Unit D lying within incised valleys of Late Pliocene age. Overlying these are two stages of Pleistocene shoreline deposits of indeterminate age. Erosion concurrent with relative sea level fall towards the last glacial maximum shoreline carved a third set of incised valleys within which sediments of the Late Pleistocene/Holocene have infilled.  相似文献   

4.
Net fluxes of respiratory metabolites (O2, dissolved inorganic carbon (DIC), NH4 +, NO3 ?, and NO2 ?) across the sediment-water interface were measured using in-situ benthic incubation chambers in the area of intermittent seasonal hypoxia associated with the Mississippi River plume. Sulfate reduction was measured in sediments incubated with trace levels of35S-labeled sulfate. Heterotrophic remineralization, measured as nutrient regeneration, sediment community oxygen consumption (SOC), sulfate reduction, or DIC production, varied positively as a function of temperature. SOC was inversely related to oxygen concentration of the bottom water. The DIC fluxes were more than 2 times higher than SOC alone, under hypoxic conditions, suggesting that oxygen uptake alone cannot be used to estimate total community remineralization under conditions of low oxygen concentration in the water column. A carbon budget is constructed that compares sources, stocks, transformations, and sinks of carbon in the top meter of sediment. A comparison of remineralization processes within the sediments implicates sulfate reduction as most important, followed by aerobic respiration and denitrification. Bacteria accounted for more than 90% of the total community biomass, compared to the metazoan invertebrates, due presumably to hypoxic stress.  相似文献   

5.
During landward migration, ridge and runnel systems are subjected to asymmetric oscillatory and/or unidirectional flow regimes, depending on the stage of development reached by these systems. In the early stages of evolution, when the ridge is situated in the upper shoreface, the whole system is subjected to asymmetric oscillatory flow. The runnel is under lower flow regime conditions and the ridge may be under upper or lower flow regime according to water depth and wave energy. Later, when the ridge has migrated to a position on the foreshore, the runnel is largely under a unidirectional lower flow regime while the ridge itself is under oscillatory upper flow regime. When the ridge welds to berm, it is largely emergent and exposed to high-tide swash action under upper flow regime conditions. The runnel is eventually filled with sand and transformed into a low-lying area. All these types grade laterally into each other. One or more ridge and runnel systems can occur at the same time. Wave energy, tide level and position of the ridge control the variations in the characteristics of the ridge and also the position of the zones of bedforms found at the upper shoreface.  相似文献   

6.
A Late Precambrian fluvial sandstone sequence in northern Norway is dominated by large-scale cross-sets that show either lenticular or tabular geometries in the streamwise sections. The lenticular sets interdigitate and in places show nearly symmetrical formsets. The tabular sets are in places solitary, but are mainly grouped in cosets. In both cross-set types, the cross-strata range from concave-up to sigmoidal in shape, with the latter variety comprising subhorizontal to gently inclined topset strata (with parting lineation) that merge uninterruptedly downflow into the steeper (10–2°) foresets. Within the cross-sets the geometry and dip azimuths of the foresets are conspicuously consistent, although the concave-up and sigmoidal strata commonly alternate downcurrent. The cross-strata characteristics suggest flood stage deposition from relatively high velocity steady currents heavily laden with suspended sand. Both cross-set types are interpreted as representing bedforms generated by flow in the dune to upper-stage plane-bed transition. The lenticular cross-sets probably represent periodic dunes, but it is far less clear whether the long bedforms represented by the tabular sets should be classified as dunes, or rather as solitary to quasi-periodic bars.  相似文献   

7.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

8.
Overlap of Karoo and Ferrar Magma Types in KwaZulu-Natal, South Africa   总被引:3,自引:0,他引:3  
A suite of mafic dykes from the Underberg region of southernKwaZulu-Natal (South Africa) were intruded at 178 Ma, coincidentin age with the major Okavango Dyke Swarm of Botswana, and alsocoincident with minor Karoo-related intrusions of the northernand central Lebombo. The dykes are all low-Ti–Zr tholeiites,they trend NW–SE and are presumed to continue into theKaroo central area of the Lesotho Highlands. In many respects,the Underberg dykes are similar to the majority of the low-Ti–Zrvolcanic and subvolcanic intrusions of the Karoo; however, their87Sr/86Sr and Nd isotope ratios are either ‘Ferrar-like’(87Sr/86Sr 0·710; Nd < –3) or transitional betweenKaroo low-Ti–Zr and Ferrar low-Ti magmas. A potentialFerrar source for at least some of the Underberg dykes is supportedby anisotropy of magnetic susceptibility analyses of the dykesuite, which demonstrate absolute flow direction from the SEto the NW, consistent with Gondwana reconstructions. The roleof crustal contamination and combined fractional crystallizationis also demonstrated to have played a key role in the petrogenesisof the Underberg dykes, involving a local upper crust contaminant.However, the composition of the ‘Ferrar-like’ dykescannot be easily explained by AFC processes, but they do demonstratethat melting of a lithospheric mantle source enriched to a smalldegree by subduction-derived fluid was also important. KEY WORDS: dyke; basalt; crustal contamination; large igneous province  相似文献   

9.
Urmilla Bob 《GeoJournal》2004,61(3):291-300
This article contributes to a greater understanding of the linkages between women's roles, responsibilities and their use of technology in poor rural communities. The ways in which poor rural women conceptualize technology is examined. Furthermore, how they use their knowledge and skills to develop, modify and adapt the techniques and technical processes in which they are involved are also explored. Additionally, the links between indigenous and modern technologies in relation to gender considerations in poor rural contexts are examined. This article draws from findings of primary research undertaken in two marginalized rural communities in Kwazulu-Natal, South Africa. The study reveals that the use of technologies are highly gendered and differentiated among women. Poor rural women utilize a range of technologies in both productive and reproductive activities which are central to their livelihood strategies, especially at the household level. Furthermore, although women are adapting and innovating technologies their expertise remains largely unrecognized. A range of problems and constraints exist which limit women's access to and use of technologies. A key tension identified in the study is that between the use of locally-based, indigenous technologies and modern, external technologies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The continental shelf of the State of Rio Grande do Norte, Brazil, is an open shelf area located 5°S and 35°W. It is influenced by strong oceanic and wind-driven currents, fair weather, 1·5-m-high waves and a mesotidal regime. This work focuses on the character and the controls on the development of suites of carbonate and siliciclastic bedforms, based on Landsat TM image analysis and extensive ground-truth (diving) investigations. Large-scale bedforms consist of: (i) bioclastic (mainly coralline algae and Halimeda) sand ribbons (5–10 km long, 50–600 m wide) parallel to the shoreline; and (ii) very large transverse siliciclastic dunes (3·4 km long on average, 840 m spacing and 3–8 m high), with troughs that grade rapidly into carbonate sands and gravels. Wave ripples are superposed on all large-scale bedforms, and indicate an onshore shelf sediment transport normal to the main sediment transport direction. The occurrence of these large-scale bedforms is primarily determined by the north-westerly flowing residual oceanic and tidal currents, resulting mainly in coast-parallel transport. Models of shelf bedform formation predict sand ribbons to occur in higher energy settings rather than in large dunes. However, in the study area, sand ribbons occur in an area of coarse, low-density and easily transportable bioclastic sands and gravels compared with the very large transverse dunes in an offshore area that is composed of denser medium-grained siliciclastic sands. It suggests that the availability of different sediment types is likely to exert an influence on the nature of the bedforms generated. The offshore sand supply is time limited and originates from sea floor erosion of sandstones of former sea-level lowstands. The trough areas of both sand ribbons and very large transverse dunes comprise coarse calcareous algal gravels that support benthic communities of variable maturity. Diverse mature communities result in sediment stabilization through branching algal growth and binding that is thought to modify the morphology of dunes and sand ribbons. The occurrence and the nature of the bedforms is controlled by their hydrodynamic setting, by grain composition that reflects the geological history of the area and by the carbonate-producing benthic marine communities that inhabit the trough areas.  相似文献   

11.
Two xenoliths of garnet harzburgite from the Finsch kimberlite, South Africa, have been found to contain diamond. One of the xenoliths has mineral compositions typical of low-T coarse textured garned peridotites, whereas minerals in the other are similar but not identical to most peridotite-suite minerals included in diamonds, especially in the low-CaO content of garnet. Geothermobarometric calculations show both xenoliths equilibrated at temperatures above 1,100°C and pressures>55 kbar, which is near the low-pressure end of the range of equilibration conditions for diamond-free garnet lherzolites and garnet harzburgites from Finsch. The chemistries of the minerals in the two rocks are distinctly different to most of the mineral inclusions in Finsch diamonds. This, as well as the different 13C compositions between xenolith diamonds (-2.8 to-4.6) and diamonds in the kimberlite (generally<-4.3) suggest different origins or sources for the diamonds.  相似文献   

12.
This paper presents one of the first investigations into the geochemical enrichment of the middle and lower Mvoti river system. Chemical elements are naturally present in aquatic sediments, but their concentrations tend to rise to potentially toxic levels via both natural and anthropogenic processes. This study evaluated the concentrations of aluminum, arsenic, boron, barium, cadmium, calcium, cobalt, chromium, copper, iron, lead, magnesium, manganese, molybdenum, nickel, phosphorous, selenium, silicon, strontium, titanium, vanadium and zinc, using inductively coupled plasma optical emission spectroscopy. The levels of elements present were used to assess their spatial distribution within the river and to determine the contamination factors and enrichment factors for each element. The pollution load index (PLi) is another contributing parameter that was calculated to determine the degree of pollution at each site. The results indicate that the sediments of the Mvoti are low to moderately polluted and deteriorating with time (average PLi value of 5.19), and that a major contributing factor to this contamination is natural sources.  相似文献   

13.
 One diamond-bearing and eight graphite-bearing eclogite xenoliths are described from the Bellsbank kimberlites, Cape Province, South Africa. Graphite mostly occurs as discrete grains which are commonly in the form of tabular prisms. Diamond is octahedral. Both Group I and Group II eclogite varieties are represented by the graphite-bearing specimens, while the single diamond-bearing eclogite is of the Group I variety. The carbon isotopic composition of the graphite varies from δ13C=−7‰ to δ13C=−2.8‰. This is within the range of carbon isotopic compositions for inclusion-free diamonds in kimberlite from this locality, suggesting that the carbon for the eclogites as well as some of the kimberlite diamonds are derived from the same source. The present day Nd isotopic compositions of clinopyroxene from three graphite-bearing xenoliths are slightly higher than the bulk earth estimate. Sr isotopic compositions of the clinopyroxene in these xenoliths vary from 87Sr/86Sr=0.703 to 87Sr/86Sr=0.706. This could be due to derivation of the xenoliths from a protolith with variable 87Sr/86Sr isotopic composition or could be the result of mixing between a low-Sr, high 87Sr/86Sr component and a high Sr, low 87Sr/86Sr component. Received: 1 June 1994/Accepted: 6 March 1995  相似文献   

14.
Estuaries, the interface of interaction of fluvial discharge and marine action serve as temporary repositories of materials (solid and dissolved) before finally exporting them to sea. This interchange of material is dependant on a range of factors such as those due to tidal variation, fluvial flows and estuarine morphodynamics. The efficacy of transfer of materials to the marine environment is important for estuarine health particularly in estuaries located in highly developed areas such as the major coastal metropolitan areas of many countries. This study assesses this efficacy for three estuaries of the eThekwini Municipality (TM) of the city of Durban, South Africa which maintains an open mouth status, ensuring tidal exchange through the year. The net flux of nitrates was measured for these estuaries on a seasonal basis for both spring and neap tides. Results indicate that although there is a net export of nitrates to the nearshore, there were instances, particularly on the spring tide, when a net import of nitrates into the estuary occurred. Data analysis reveal summer and neap tide flux dominance for the Tongati and Mgeni estuaries whilst the Isipingo Estuary exhibited larger flux variance for spring tides and the spring season. The origin of the latter is likely derived from unusually high biotic decomposition at sea and/or the longshore transport of decomposing sewage outfall. This creates an added dimension for consideration in estuarine management plans. Taking all three estuaries studied into consideration, a net export of nitrates for all seasons for the TM was measured with a clear seasonal influence detected where high rainfall seasons led to greater export as a consequence of greater fluvial flows, erosion and leaching of agricultural lands and, longer ebb duration and flows.  相似文献   

15.
Five small dune fields were investigated in central Sweden in the field and by using LiDAR‐based remote sensing. The chronology of the dunes was determined using optically stimulated luminescence (OSL) dating. Most of the OSL ages indicate dune formation close to the time of deglaciation in this area of Sweden (11–10 cal. ka BP) and later sand drift events appear to have been uncommon, suggesting that most of the dune fields have been stable since their formation and throughout the Holocene. This makes them a valuable archive of past sand drift events and palaeowind directions, even though the dune fields are small compared to most other investigated dune fields around the world. The dunes are primarily of a transverse or parabolic type, and their orientation suggests formation by westerly or northwesterly winds. The local topography appears to have had little control over the formation of the dunes, suggesting that the dunes can be used as a proxy of regional wind directions. All dune fields in this study are linked to glacifluvial deposits that provide spatially and volumetrically limited sources of sand.  相似文献   

16.
This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.  相似文献   

17.
Contourite origin for shelf and upper slope sand sheet, offshore Antarctica   总被引:1,自引:0,他引:1  
A widespread (3200 km2), thick (10 cm to > 100 cm) sand deposit exists on the continental shelf and upper slope offshore of the Pennell Coast, Antarctica. The sand body occurs at water depths between 200 and 1200 m. The mean grain size of the sand varies from 3·3 phi to 1·2 phi, and the composition is dominantly volcanic. The only source for this volcanic material is Cape Adare, a volcanic headland. Sands are transported up to 70 km from Cape Adare by a westward‐flowing circumpolar boundary current that impinges on the upper slope and shelf. Radiocarbon dates from the sand and from the glacial unit beneath it indicate that the deposit formed within the past 9000 years. The occurrence of this sand sheet demonstrates the ability of contour currents to assemble extensive sand bodies on the shelf and upper slope and the relatively rapid rate at which these deposits may form.  相似文献   

18.
Petrographic and geochemical features of a suite of eclogite xenoliths from the Rietfontein kimberlite that erupted through probable Proterozoic crust west of the Kaapvaal Craton in the far Northern Cape region of South Africa, are described. Group II eclogites dominate the suite both texturally and chemically, but can be subdivided into bimineralic, opx-bearing and kyanite-bearing groups. Temperature estimates from different geothermometers range from 700 to 1,000°C, indicating derivation from relatively shallow mantle depths. Orthopyroxene-bearing eclogites are inferred to originate from depths of 85 to 115 km and lie close to the average cratonic thermal profile for southern Africa. These uppermost mantle temperatures during the late Cretaceous provide evidence for equilibration of the off-craton lithosphere to craton-like thermal conditions following Namaqua-Natal orogenesis. The kyanite eclogites are distinct from the remaining eclogites in terms of both major and trace element compositions and their lesser degree of alteration. Garnets are richer in Ca, and are Cr-depleted relative to garnets from the bimineralic and opx-bearing eclogites, which tend to be more magnesian. Clinopyroxenes from the kyanite eclogites are more sodic, with higher Al2O3 and lower MgO contents than the bimineralic and opx-bearing eclogites. LREE-depletion, positive Sr and Eu anomalies, and the Al-rich, Si-poor bulk composition suggest a plagioclase-rich, probably troctolitic protolith for the kyanite eclogites. In contrast, the major and trace element bulk compositions of the high-MgO bimineralic and orthopyroxene-bearing eclogites are consistent with gabbroic or pyroxenitic precursors, or high-pressure cumulates, rather than mafic to ultramafic lavas. δ18O values for garnets do not deviate significantly from typical mantle values. The observations reported do not discriminate unambiguously between continental and oceanic origins for the various eclogite components in the mantle lithosphere of this region.  相似文献   

19.
The monitoring of turbidity currents enables accurate internal structure and timing of these flows to be understood. Without monitoring, triggers of turbidity currents often remain hypothetical and are inferred from sedimentary structures of deposits and their age. In this study, the bottom currents within 20 m of the seabed in one of the Pointe-des-Monts (Gulf of St. Lawrence, eastern Canada) submarine canyons were monitored for two consecutive years using Acoustic Doppler Current Profilers. In addition, multibeam bathymetric surveys were carried out during deployment of the Acoustic Doppler Current Profilers and recovery operations. These new surveys, along with previous multibeam surveys carried out over the last decade, revealed that crescentic bedforms have migrated upslope by about 20 to 40 m since 2007, despite the limited supply of sediment on the shelf or river inflow in the region. During the winter of 2017, two turbidity currents with velocities reaching 0·5 m sec−1 and 2·0 m sec−1, respectively, were recorded and were responsible for the rapid (<1 min) upstream migration of crescentic bedforms measured between the autumn surveys of 2016 and 2017. The 200 kg (in water) mooring was also displaced 10 m down-canyon, up the stoss side of a bedform, suggesting that a dense basal layer could be driving the flow during the first minute of the event. Two other weaker turbidity currents with speeds <0·5 m sec−1 occurred, but did not lead to any significant change on the seabed. These four turbidity currents coincided with strong and sustained wind speed >60 km h−1 and higher than normal wave heights. Repeat seabed mapping suggests that the turbidity currents cannot be attributed to a canyon-wall slope failure. Rather, sustained windstorms triggered turbidity currents either by remobilizing limited volumes of sediment on the shelf or by resuspending sediment in the canyon head. Turbidity currents can thus be triggered when the sediment volume available is limited, likely by eroding and incorporating canyon thalweg sediment in the flow, thereby igniting the flow. This process appears to be particularly important for the generation of turbidity currents capable of eroding the lee side of upslope migrating bedforms in sediment-starved environments and might have wider implications for the activity of submarine canyons worldwide. In addition, this study suggests that a large external trigger (in this case storms) is required to initiate turbidity currents in sediment-starved environments, which contrasts with supply-dominated environments where turbidity currents are sometimes recorded without a clear triggering mechanism.  相似文献   

20.
Geophysical data from Gerlache Strait, Croker Passage, Bismarck Strait and the adjacent continental shelf reveal streamlined subglacial bedforms that were produced at the bed of the Antarctic Peninsula Ice Sheet (APIS) during the last glaciation. The spatial arrangement and orientation of these bedforms record the former drainage pattern and flow dynamics of an APIS outlet up‐flow, and feeding into, a palaeo‐ice stream in the Western Bransfield Basin. Evidence suggests that together, they represent a single ice‐flow system that drained the APIS during the last glaciation. The ice‐sheet outlet flowed north/northeastwards through Gerlache Strait and Croker Passage and converged with a second, more easterly ice‐flow tributary on the middle shelf to form the main palaeo‐ice stream. The dominance of drumlins with low elongation ratios suggests that ice‐sheet outlet draining through Gerlache Strait was comparatively slower than the main palaeo‐ice stream in the Western Bransfield Basin, although the low elongation ratios may also partly reflect the lack of sediment. Progressive elongation of drumlins further down‐flow indicates that the ice sheet accelerated through Croker Passage and the western tributary trough, and fed into the main zone of streaming flow in the Western Bransfield Basin. Topography would have exerted a strong control on the development of the palaeo‐ice stream system but subglacial geology may also have been significant given the transition from crystalline bedrock to sedimentary strata on the inner–mid‐shelf. In the broader context, the APIS was drained by a number of major fast‐flowing outlets through cross‐shelf troughs to the outer continental shelf during the last glaciation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号