共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The use of headland-breakwater systems along the shore of Chesapeake Bay began in the early 1980s. Properly designed and installed headland breakwaters with beach fill and wetlands plantings provide shore protection and create a “full” coastal profile of beach/backshore/dune which enhances habitat. They create a tertiary buffer for upland runoff and groundwater and provide access and recreation. The wetland grasses also create an erosion resistant turf. The coastal profile accommodates environmental permitting requirements of habitat enhancement for shore protection structures. 相似文献
3.
厦门岛东南部海岸演变与泥沙输移 总被引:8,自引:1,他引:8
通过海岸地貌调查、沉积物分布、岸线对比、沿岸输沙率计算等手段,分析研究了厦门岛东南部海岸海滩的演变特征,认为厦门岛东南部海岸的沿岸净输沙方向是由东北向西南,由东向西;黄厝湾中北部存在反向输沙。文中划分了中-强侵蚀海岸、中侵蚀海岸、中-弱侵蚀海岸、弱侵蚀海岸、弱淤积海岸和不确定海岸等6种类型。人工采沙是引起海岸侵蚀的最重要因素之一。 相似文献
4.
A series of migrating shore-normal sandbars with wavelengths of 75–120 m and heights up to 2 m have been identified off the northern tip of Anna Maria Island, a barrier island on the west-central Florida coast. Similar features have been described elsewhere since the 1930s and termed ‘transverse bars’. The transverse bars identified off Anna Maria Island are found for about 3 km along the coast and extend 4 km offshore, well outside the normal surf-zone width. No cusps or any other associated beach expression is evident despite the fact that the bars come to within about 75 m of the beach. Sediments on the crests of the bars are a well-sorted fine quartz sand, whereas sediments in the troughs are a poorly sorted coarse carbonate shell hash. Historical aerial photographs and repeated high-resolution bathymetric surveys provide a means of quantifying the migration of the transverse bars. Analyses of orthorectified aerial photographs from the early 1940s through the mid 1990s clearly show movement or migration taking place in the bar field. In the 40-yr period from 1951 to 1991, the southern edge of the bar field moved 200–350 m to the south, with an average long-term migration rate of 8 m/yr. Repeated bathymetric surveys over an 8-month period give an average short-term migration rate of 21 m/yr to the south. Wave and current measurements suggest that southerly winds associated with the passage of cold fronts drive near-bed currents to the south that are strong enough to initiate sediment transport and cause the southerly migration of the transverse bars. 相似文献
5.
Philip Y. Chu Gregg A. Jacobs M. Kemal Cambazoglu Robert S. Linzell 《Marine Geodesy》2013,36(4):399-428
In this paper, we discuss the validation of water level and current predictions from three coastal hydrodynamic models and document the resource and operational requirements for each modeling system. The ADvanced CIRCulation Model (ADCIRC), the Navy Coastal Ocean Model (NCOM), and Delft3D have been configured and validated for the Chesapeake Bay region during a Navy exercise. Water level predictions are compared with a NOAA/NOS water level gauge at the Chesapeake Bay Bridge Tunnel location while current predictions are validated with Acoustic Doppler Profiler (ADP) measurement records at three locations in the lower Chesapeake Bay. Statistical metrics such as correlation coefficient and root mean square error (RMSE) are computed. Both the vertically-integrated currents and currents at varying water depths are compared as well. The model-data comparisons for surface elevation indicate all three models agreed well with water level gauge data. The two-dimensional version of ADCIRC, ADCIRC2D, and NCOM yield better statistics, in terms of correlation and RMSE, than Delft3D. For vertically-integrated currents, ADCIRC2D has the smallest RMSE at Thimble Shoal and Naval Station locations while NCOM has the smallest RMSE at Cape Henry. For the horizontal currents over the water column, the fully three-dimensional, baroclinic ADCIRC model, ADCIRC3D, and NCOM both showed better agreement with the ADP measurements. 相似文献
6.
采用1977,1994,2003,2010年4个年份的地形图,建立了DEM模型,结合二维水动力模型对近30多年来黄茅海拦门沙演变的特征及成因进行了分析。研究表明近30多年来黄茅海拦门沙平面上向海推移,范围缩小,在内坡和拦门沙顶冲刷,在外坡淤积;拦门沙的基本成因是其位于上溯流与下泄流控制区域之间的过渡带,该过渡带为明显的动力较弱的区域,泥沙较易在此处沉积;黄茅海大面积的围垦导致纳潮量减少、潮汐动力减弱、径流作用相对增强,使下泄流控制区扩大、上溯流控制区减小、过渡区下移,这是拦门沙冲刷外移和缩小的主要原因。上游来沙量减少加剧了拦门沙冲刷外移和缩小。 相似文献
7.
A three-dimensional hydrodynamic model of the Upper Chesapeake Bay was used to examine the nature and cause of an intensification of subtidal, southward surface current in the middle reaches of the basin. The deep navigation channel along the eastern boundary was found to be ultimately responsible. The deep channel allows the density and tidally-induced subtidal currents to intensify over it, producing the eastern intensification. Both mechanisms operate in the non-rotating limit and consequently do not diminish with vanishing effect of the earth's rotation. Density-induced forcing is predominantly baroclinic, generating a northward undercurrent in the deep channel and a southward current aloft which attenuates westward. Tidal forcing is mostly barotropic, producing southward mean current in the deep channel and return flow to the west. Historic data lend support to the model results. 相似文献
8.
The speciation of dissolved iodine and the distributions of the iodine species in the deep Chesapeake Bay underwent seasonal variations in response to changes in the prevailing redox condition. In the deep water, the ratios of iodate to iodide and iodate to inorganic iodine decreased progressively from the Winter through the Summer as the deep water became more poorly oxygenated before they rebounded in the Fall when the deep water became re-oxygenated again. The composition of the surface water followed the same trend. However, in this case, the higher biological activities in the Spring and the Summer could also have enhanced the biologically mediated reduction of iodate to iodide by phytoplankton and contributed to the lower ratios found during those seasons. Superimposed on this redox cycle was a cycle of input and removal of dissolved iodine probably as a result of the interactions between the water column and the underlying sediments. Iodine was added to the Bay during the Summer when the deep water was more reducing and removed from the Bay in the Fall when the deep water became re-oxygenated. A third cycle was the inter-conversion between inorganic iodine and ‘dissolved organic iodine’, or ‘‘DOI’’. The conversion of inorganic iodine to ‘DOI’ was more prevalent in the Spring. As a result of these biogeochemical reactions in the Bay, during exchanges between the Bay and the North Atlantic, iodate-rich and ‘DOI’-poor water was imported into the Bay while iodide- and ‘DOI’-rich water was exported to the Atlantic. The export of iodide from these geochemically reactive systems along the land margins contributes to the enrichment of iodide in the surface open oceans. 相似文献
9.
The concentrations of total selenium (Se) and Se (IV) were determined in the surface waters of 30 stations located in the James River and southern Chesapeake Bay. The concentrations of total Se and Se (IV) ranged from 0·28 to 1·91 nM and from 0·07 to 1·36 nM, respectively, between salinities of 31·78 and 0·06‰. The concentration of Se (VI), calculated as the difference between the concentrations of total Se and Se (IV), ranged from 0·08 to 0·67 nM. While total Se seemed to be conservative in this study area at salinities above 0·36‰, Se (IV) might have been removed during estuarine mixing. The removal of Se (IV) occurred primarily at salinities below 4‰ possibly via the oxidation of Se (IV) to Se (VI). 相似文献
10.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles. 相似文献
11.
David F. Johnson 《Estuarine, Coastal and Shelf Science》1985,20(6):693-705
Vertical and horizontal distributions are described for megalopae of 11 brachyuran taxa common to the lower Chesapeake Bay and adjacent shelf. Three distribution patterns are apparent from horizontal distribution.
- 1. (1) More than 75% of the megalopae of estuarine adults, such as Hexapanopeus angustifrons, Neopanope sayi, Panopeus herbstii, Rhithropanopeus harrisii and Pinnotheres ostreum, are retained in estuarine waters.
- 2. (2) The megalopae of three estuarine taxa, Callinectes sapidus, Uca spp. and Pinnixa sp., are most abundant on the shelf.
- 3. (3) More than 90% of the megalopae of the shelf species, Portunus sp., Cancer irroratus and Libinia spp. remained in shelf waters.
12.
Cape Rodney is a large headland that protrudes 3–4 km into deep water in the Hauraki Gulf and separates the Mangawhai‐Pakiri and Omaha littoral cells. Detailed swath mapping of seabed sediments around Cape Rodney was carried out using by side‐scan sonar and ground‐truthed by SCUBA, grab sampling, and video. Despite the barrier imposed by the headland two pathways of sand transport around the headland, separated by the topographic high of Leigh Reef, have been identified. One lies close to the headland, where sand from the beach and nearshore of the Mangawhai‐Pakiri embayment is driven by waves and currents along a 500‐m‐wide pathway in c. 20–25 m depth around the headland to the vicinity of Leigh Harbour. The other lies in 50 m water‐depth seawards of Leigh Reef. Here fine sand, sourced from the nearshore of the Mangawhai‐Pakiri embayment and driven offshore from the tip of the headland, is transported back and forth by tidal currents in 50 m water depth on the floor of the Jellicoe Channel. The sand bodies along both these pathways are thin and so sand leakage from the Mangawhai‐Pakiri embayment is thought to be small. Transport at these depths is dependent on both tide and wave generated currents and episodic occurring during storm events. The sediment facies associated with little sand transport about a headland in deep water is one of thin and discontinuous and patchy sand cover between rocky areas and over coarser megarippled substrate. Ocean swell, tidally driven phase eddies that spin up on both sides of the headland, and bathymetry all play a role in shaping those facies. 相似文献
13.
L. D. Wright D. B. Prior C. H. Hobbs R. J. Byrne J. D. Boon L. C. Schaffner M. O. Green 《Estuarine, Coastal and Shelf Science》1987,24(6)
The spatial distributions of the bed textural and morphologic properties that influence boundary-layer roughness characteristics in the lower Chesapeake Bay, the lower portions of the York, James and Elizabeth Rivers, and the adjacent inner continental shelf were systematically mapped. A high resolution, fully-corrected side-scan sonar mapping system (100 kHz) was used for remote acoustic detection of bottom roughness, supported by ‘ground-truthing’ by direct in situ observations by divers. These complementary methods proved to be especially effective in detecting a wide range of roughness-controlling bed surface properties at various scales. Fine-scale variations in sediment size and associated bottom texture are considered to be the main source of heterogeneity in Nikuradse (skin friction) roughness. A wide variety of small- and intermediate-scale morphologic elements provide meso-scale and small-scale distributed (form drag) roughness. Depending upon location, the distributed roughness may be either biogenic or hydrodynamically induced (by currents and waves), although anthropogenic roughness prevails in certain instances (e.g. port areas). In terms of particular combinations of roughness scales and types, combined sonar and diver observation data allow the beds to be systematically but qualitatively classified into 10 bottom types, each of which is associated with a particular type of subenvironment. 相似文献
14.
The distributions of iodate, iodide and dissolved organic iodine (DOI) were determined in two deep sub-basins in the Chesapeake Bay, the shallow waters at the mouth of the Bay and the adjacent North Atlantic between the late spring and the early fall along the net flow-path of the water entering and exiting the Chesapeake Bay by using an improved analytical scheme designed for the quantitative recovery of DOI. The concentration of R-DOI found in the surface mixed layer in the upper Bay was about twice of those found at the same location in previous studies. (R-X was the concentration of a dissolved iodine species X that had been normalized to a constant salinity of 35.) Thus, DOI in estuarine waters might have been underestimated significantly in the earlier studies. Following the water along its net flow-path, iodate initially constituted more than 60% of total iodine (TI) in the source water in the Middle Atlantic Bight off the Delmarva Peninsula. As this water entered the Chesapeake Bay through the northern part of its mouth, the concentration of R-iodate decreased while that of R-iodide increased progressively until the former became undetectable in the surface mixed layer while the latter reached a maximum of 0.42 μM in the deep water in the upper Bay. Then, the concentration of R-iodate rebounded while that of R-iodide decreased in the outflowing water that exited through the southern part of the mouth of the Bay and was later entrained by the Gulf Stream. The concentration of R-DOI in the surface waters followed the same pattern as R-iodide and reached a maximum of 0.20 μM in the upper Bay. However, R-DOI was depleted in the deep water in the sub-basins. Its concentration dropped to around the detection limit in the suboxic waters in the upper Bay. R-TI in the Bay far exceeded that in the incoming Middle Atlantic Bight water and reached 0.55 μM in the upper Bay. These distributions of the iodine species suggest that, as water from the Middle Atlantic Bight intruded into the Chesapeake Bay, in the well oxygenated surface mixed layer, iodate was reduced to iodide, and the inorganic iodine species could also be converted to DOI. In the deep water, iodate and DOI were converted to iodide. Superimposed on these inter-conversions among the iodine species, dissolved iodine, possibly in the form of iodide, was also added to the water column from the underlying sediments and the process was especially significant in the suboxic deep water in the upper Bay. Mixing between the surface mixed layer and the deep water could also have increased the concentrations of iodide and total iodine in the former. 相似文献
15.
Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin 总被引:3,自引:0,他引:3
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged 1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget. 相似文献
16.
Brent L. Lewis Brian T. Glazer Paul J. Montbriand George W. Luther III Donald B. Nuzzio Timothy Deering Shufen Ma Stephen Theberge 《Marine Chemistry》2007,105(3-4):296-308
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling. 相似文献
17.
Kam W. Tang Curtis S. Freund Christopher L. Schweitzer 《Estuarine, Coastal and Shelf Science》2006,68(3-4):499
We tested and refined the Neutral Red staining method for separating live and dead copepods in natural samples. Live copepods were stained red whereas dead copepods remained unstained. The staining results were not affected by method of killing, time of death or staining time. Tow duration had no significant effect on the percent dead copepods collected. The Neutral Red staining method was applied to study the occurrence of dead copepods along the York River and the Hampton River in the lower Chesapeake Bay during June–July, 2005. The zooplankton community was dominated by copepods; on average 29% of the copepod population appeared dead. Recovery of percent dead copepods did not differ between horizontal tows and vertical tows, suggesting that dead copepods were homogenously distributed in the water column. No significant relationship was found between the percent dead copepods and surface water temperature, salinity, Secchi depth or chlorophyll concentration. In laboratory experiments, dead copepods were decomposed by ambient bacteria and the rate of decomposition was temperature-dependent. Combining field and laboratory results we estimated that the non-consumptive mortality (mortality not due to predation) of copepods in the lower Chesapeake Bay was 0.12 d−1 under steady-state condition, which is within the global average of copepod mortality rate. 相似文献
18.
利用2014–2017年在台湾海峡西部采集的多波束、单道地震剖面、沉积物粒度样品及海流监测资料,在厦门湾近岸陆架区识别出一系列海底沙波,并对沙波的形态特征、分布规律和沉积物组成特征进行分析,探讨水动力条件及其对沙波发育的影响.结果表明沙波发育区水深一般为10~60 m,地形较平缓开阔,坡度一般为0°~1°;平面上沙波区... 相似文献
19.
20.
Plasma vitellogenin and related parameters in the killifish Fundulus heteroclitus were measured at selected sites in the Chesapeake Bay. In males, vitellogenin was above the detection limit 14% of the time, and detections did not differ between sites or seasons. Few differences in plasma vitellogenin levels were found between sites during fall in either male or female F. heteroclitus, the time of natural gonadal regression for this species. There was some variation in the ratio of male to female F. heteroclitus, but was not consistent at most sites. Significant negative correlations were found between reported sediment polycyclic aromatic hydrocarbons (PAHs) and GSI, and PAHs and plasma vitellogenin in females in both Spring 1999 and Spring 2000. Gonadal anomalies in F. heteroclitus included slight reductions in certain tissue types. Overall, reproductive endocrine disruption in the killifish F. heteroclitus at the sites sampled in the Chesapeake Bay appeared somewhat minimal. 相似文献