首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding patterns of 12 teleost species taken by demersal trawl from two areas of the Cape coast and which fed predominantly on benthic and epibenthic prey are described. Prey selection varied intraspecifically with growth. There was considerable overlap in prey taken by different predators, although the dominant food differed between the two coasts and according to habitat (soft substrata or hard reefs). Prey selection varied with depth, probably as a result of the influence of depth and other physical features on prey species distribution. Small crustaceans were taken by all the predators and constituted the single most important group, especially for small predators. Brachyurans were important as prey, particularly in those species inhabiting hard substrata. Fish were of minor importance as food, except in Chelidonichthys capensis, Malacocephalus laevis and Helicolenus dactylopterus. Commercially important species of fish and cephalopods were preyed on only occasionally. It appeared that prey were selected according to their abundance, size, behaviour and habitat use. The use of benthic and epibenthic prey constitutes an important pathway for energy to return from the benthos to the foodweb.  相似文献   

2.
Experimental manipulations of invertebrate prey and predators on rocky shores have been done by many authors. In the northern Atlantic the predators involved are usually the green crab Carcinus maenas and/or the dogwhelk Nucella lapillus, and the prey species studied are acorn barnacles (balanid Cirripedia), mussels (Mytilus spp.) and winkles (Littorina spp.). Usually the predators are found to have a regulating “top–down” effect on the prey species. In Iceland the acorn barnacle Semibalanus balanoides, the blue mussel Mytilus edulis and the flat periwinkle Littorina obtusata (including to some extent Littorina mariae) are found on rocky shores all around Iceland in what would seem to be near-optimal physical conditions. The predators Carcinus maenas and Nucella lapillus, on the other hand, are relatively southern species that do not thrive on the colder coasts of Iceland. Thus general surveys of different coasts of Iceland would seem to offer opportunities to see whether the results of local experiments can be discerned on a geographical scale (hundreds of km). The roughly 4900 km of the rocky coastline in Iceland was in this study subdivided into four regions, I–IV, according to the commonness or presence of the two predators. With the hope of reducing compounding factors the surveys were confined to sheltered or semi-sheltered fucoid shores, which were further divided into Ascophyllum (more sheltered) and Fucus vesiculosus (less sheltered) shores. Estuaries or other low-salinity environments were avoided. The study was based on 761 stations distributed around the rocky coastline on these two types of shores. The results for barnacles and mussels, being generally more abundant in regions were predators were scarce or absent, and being less common in Ascophyllum than F. vesiculosus shores in contrast to the predatory dogwelks, were in large measure in accord with predictions from experiments indicating “top–down” regulation. The results for the periwinkles, however, suggested that “bottom–up” regulation might be of greater importance, as their density was closely linked to the biomass of macroalgae, while the abundance of predators appeared to have little effect. The periwinkle, although certainly eaten, may not be a preferred prey of the two predators in question in Iceland. This paper forms a link between experimental and observational study approaches.  相似文献   

3.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

4.
Shorebirds and flatfish were selectively excluded from areas of mudflat of the Ythan estuary in two separate experiments. Exclosures and control areas were monitored over several months for sediment and faunal characteristics and compared by 2-way ANOVA. There was no significant effect of the exclosures on sediment properties, due to the relatively large open area of the exclosure material used. Exclosures had little effect on invertebrate densities. The results are discussed in relation to prey mobility and the effects of predation estimated from energy demands of the predators. It is suggested that, over the study period, predators did not significantly affect the numbers of invertebrates in the mudflats. Over the winter period, Corophium within exclosures were significantly larger than those in control areas, probably due to size-selective predation by shorebirds.  相似文献   

5.
Laboratory experiments were performed on the food ecology of four congeneric species of free-living plathelminths, Promesostoma caligulatum, P. marmoratum, P. rostratum, and P. meixneri, all inhabiting an intertidal sandflat near the island of Sylt (North Sea). Their prey spectrum is within the microcrustaceans: P. caligulatum preferred ostracods, while the other three species favoured copepods, with species-specific differences for copepod species and size classes. Daily consumption of prey species varied with the size of both the predator and the prey. On average, P. marmoratum consumed 0.76 Harpacticus flexus per day while this rate decreased to 0.06 in P. meixneri, the smallest predator. When these Promesostoma species were fed with Tachidius discipes, a smaller prey species, their predation rates were about 25% higher. While the larger predators preferred the larger harpacticoids as prey, the small P. meixneri preferred small cyclopoids over larger harpacticoids. In terms of biomass, P. marmoratum's mean consumption of T. discipes per day was about half the predator's own weight. This average varied with prey density and temperature. A comparison of these consumption rates with the field densities of the predators and their prey shows that the plathelminth predators may consume as much as 10% per day of their copepod prey populations, thus strongly influencing these prey populations on these sandflats. The predation pressure of P. caligulatum on ostracods was about 1% per day of the prey population. Since ostracods usually have fewer generations per year, the total effect on the population dynamics may be similar to that on copepods. Therefore, nocturnal swimming of copepods in the water column may be interpreted as an attempt to escape plathelminth predators.  相似文献   

6.
In the northern Wadden Sea, the extent of intertidal seagrass beds, their plant biomass and shoot density highly depends on local current regimes. This study deals with the role of intertidal Zostera noltii beds as nursery for mobile epibenthic macrofauna and the impact of seagrass bed characteristics on their abundance and distribution patterns. According to their exposure to the main tidal gullies, sampling sites were separated into exposed, semi-exposed and sheltered. Dominant species of crustaceans and demersal fish were studied in respect of their abundances within seagrass beds and adjacent unvegetated areas. Quantitative sampling was performed at day and night high tide using a portable drop trap. In general, species composition varied little between seagrass beds and bare sand. However, the presence of vegetation had a quantitative effect increasing individual numbers of common epifaunal species. Abundances of 0-group shore crabs (Carcinus maenas), common gobies (Pomatoschistus microps) and brown shrimps (Crangon crangon) were highest within sheltered seagrass beds. With decreasing plant density habitat preference of epibenthos changed on species level. By regulating the habitat complexity the currents regime is profoundly influencing the nursery function of intertidal seagrass beds in the Wadden Sea.  相似文献   

7.
In estuarine sediment flats benthic macroinvertebrates are intensively consumed by a variety of predators, such as aquatic birds and nekton (mostly fish and crustaceans). However, there is still a lack of conclusive studies that evaluate if this predation has a relevant impact on the populations of those invertebrates, which are a key element of the estuarine food chain. In the Tagus estuary we experimentally tested and quantified the impact of predation on the polychaete Hediste diversicolor, one of the most important prey for a variety of predators in many estuaries. Using an exclusion experiment, we compared the seasonal variation in the densities of H. diversicolor from February to November in sediment plots (1) available to both bird and nekton predators, (2) just to nekton, and (3) without predators. We also followed changes in the abundance of potential predators throughout the study. The lowest densities were systematically observed in the plots accessible to all predators, followed by those which excluded just birds, and finally by those that excluded all predators. The exclosures were in place for 9 months, at the end of which the average density of H. diversicolor in the plots protected from all predators was eight times greater than in those without any protection. These results demonstrate that predation had a major impact on the densities of H. diversicolor. The relative importance of bird and nekton predation varied along the study, and this seems to be determined by different peaks of abundance of the two types of predators. However, when present in high densities, birds and nekton seem to have a similar impact on H. diversicolor. Our results suggest that predation is a key factor on the population dynamics of H. diversicolor. In addition, the levels of predation that we observed suggest that this polychaete can be a limited resource, and this could have major ecological consequences for predators for which it is a key prey.  相似文献   

8.
The energy flow through the epibenthic community on a shallow soft bottom in Gullmar Fjord, Sweden, is evaluated. The interaction between the dominant epibenthic predators: brown shrimp Crangon crangon L., juvenile plaice Pleuronectes platessa L. and sand goby Pomatoschistus minutus (Pallas), and their food supply is examined, and the fate of the biomass produced within the shallow water ecosystem is described. A steady state model is presented which describes the amounts, pathways and annual rates of energy flowing through the shallow water community. Field and laboratory studies are performed in order to validate the consumption rates of the fish and shrimp species. The brown shrimp occupies a key position in this ecosystem. It represents food, consisting of newly settled juveniles, both to its conspecifics and to other epibenthic species in shallow water. Sixty to eighty per cent of the annual production of shrimps in shallow water is consumed by the epibenthic predators. The brown shrimp constitutes a main predator on other epibenthic species and, by providing such feedback loops, the shrimp constitutes a highly significant regulator of epibenthic carnivores in shallow water. A loss from the benthic community will occur due to predation, maximally amounting to 24–34% of the annual production, which is a high value compared to similar areas. A dynamic simulation is also performed in order to calculate the seasonal change of energy in the epibenthic community in shallow water. Based on mortality calculations, the total output from the shallow nursery should amount to 0·6 g m−2 year−1 (dry wt).  相似文献   

9.
Many studies on invasive species show reduced native densities, but few studies measure trait‐mediated effects as mechanisms for changes in native growth rates and population dynamics. Where native prey face invasive predators, mechanisms for phenotypic change include selective predation, or induced behavioral or morphological plasticity. Invasive green crabs, Carcinus maenas, have contributed to declines in native soft‐shell clams, Mya arenaria, in coastal New England, USA. We tested the hypothesis that clam ability to detect chemical cues from predators or damaged conspecifics would induce greater burrowing depth as a refuge from invasive crabs, and greater burrowing would require increased siphon growth. To determine how crab predation affected clam survivorship and phenotypic traits in the field, clams in exclosure, open, and crab enclosure plots were compared. Crab predation reduced clam density, and surviving clams were deeper and larger, with longer siphons. To determine whether the mechanism for these results was selective predation or induced plasticity, phenotypes were compared between clams exposed to chemical cues from crab predation and clams exposed to seawater in laboratory and field experiments. In response to crab predation cues, clams burrowed deeper, with longer siphons and greater siphon mass. Overall, crab predation removed clams with shorter siphons at shallow depths, and crab predation cues induced greater burrowing depths and longer siphons. Longer siphons and greater siphon mass of deeper clams suggests clams may allocate energy to siphon growth in response to crabs. By determining native behavior and morphological changes in response to an invasive predator, this study adds to our understanding of mechanisms for invasive impacts and illustrates the utility of measuring trait‐mediated effects to investigate predator–prey dynamics.  相似文献   

10.
Several studies in the last 20 years have revealed that morphological asymmetry in fish can be characterized as ‘antisymmetry’. Antisymmetry is a lateral dimorphism in which each population consists of individuals with well‐developed left sides (lefties) and well‐developed right sides (righties). This dimorphism influences predator–prey interactions. In some piscivorous fishes, it has been found that predators can catch more prey of the opposite morphological type to themselves (cross‐predation) than of the same morphological type (parallel‐predation). Our previous work clarified that the predominance of cross‐predation is caused by lateralized behaviors of predators and prey that correspond to their morphological antisymmetry. Moreover, based on the results of our behavioral observations, we hypothesized that parallel‐predation can predominate when predators encounter the potential prey frontally. To test this hypothesis, in the present study we investigated the relationship between lateral morphological types of anglerfish (Lophiomus setigerus) and those of the prey fishes found in their stomachs. Anglerfish attract potential prey using their first dorsal fin (illicium) as a lure, and their frontal encounters with potential prey fishes were photographed in situ and observed in an aquarium. The results of a stomach contents analysis indicated that parallel‐predation predominated in five benthopelagic prey fish species (perches and eels). By contrast, five benthic prey fishes (gobies and weevers) exhibited the predominance of cross‐predation. These results not only demonstrate the predominance of parallel‐predation in a natural fish community, but also suggest that the relationship between morphological types of predator and prey species can be reversed depending on the lifestyle of prey.  相似文献   

11.
Many marine ecosystems exhibit a characteristic “wasp-waist” structure, where a single species, or at most several species, of small planktivorous fishes entirely dominate their trophic level. These species have complex life histories that result in radical variability that may propagate to both higher and lower trophic levels of the ecosystem. In addition, these populations have two key attributes: (1) they represent the lowest trophic level that is mobile, so they are capable of relocating their area of operation according to their own internal dynamics; (2) they may prey upon the early life stages of their predators, forming an unstable feedback loop in the trophic system that may, for example, precipitate abrupt regime shifts. Experience with the typical “boom-bust” dynamics of this type of population, and with populations that interact trophically with them, suggests a “predator pit” type of dynamics. This features a refuge from predation when abundance is very low, very destructive predation between an abundance level sufficient to attract interest from predators and an abundance level sufficient to satiate available predators, and, as abundance increases beyond this satiation point, decreasing specific predation mortality and population breakout. A simple formalism is developed to describe these dynamics. Examples of its application include (a) a hypothetical mechanism for progressive geographical habitat expansion at high biomass, (b) an explanation for the out-of-phase alternations of abundances of anchovies and sardines in many regional systems that appear to occur without substantial adverse interactions between the two species groups, and (c) an account of an interaction of environmental processes and fishery exploitation that caused a regime shift. The last is the example of the Baltic Sea, where the cod resource collapsed in concert with establishment of dominance of that ecosystem by the cod’s ‘wasp-waist” prey, herring and sprat.  相似文献   

12.
We analyzed recent food web and fish stock changes in the central Chile marine ecosystem, comparing the roles of jumbo squid (Dosidicus gigas) as predator, the environment, and fishing. To accomplish this we used food web modeling and the Ecopath with Ecosim software (EwE). The principal fish stocks have experienced wide decadal fluctuations in the past 30 years, including stock collapses of horse mackerel (Trachurus murphyi) and hake (Merluccius gayi), and there was a large influx of jumbo squid during the mid-2000s. We used two EwE models representing the food web off central Chile to test the hypothesis that predation by jumbo squid has been significant in explaining the dynamics of the main fishing resources and other species in the study area. Results indicate that predation by jumbo squid on fish stocks is lower than that of other predators (e.g. hake) and the fishery. Long-term fluctuations (1978–2004) in the biomass of the main fish stocks (as well as other components of the food web) seem to be related to fishing and to variation in primary production, rather than to predation by jumbo squid alone. Jumbo squid seems to play a role as predator rather than prey in the system, but its impacts are low when compared with the impacts of other predators and fishing. Therefore, we conclude that jumbo squid predation on its prey was not the primary force behind the collapse of important fish stocks off central Chile. Future efforts should be directed to better understanding factors that trigger sudden increases in jumbo squid abundance off central Chile, as well as modeling its trophic impacts.  相似文献   

13.
A model was developed to estimate the relative impacts of different functional groups of piscivores on the shallow-water estuarine nursery assemblage of tropical north-eastern Australia. Data on variability in the occurrence, number and type of fish in the diet of different piscivores was combined with estimates of the abundance of each group. The model predicts that previously overlooked small and occasional or ‘minor’ piscivores, such as sillaginids, ambassids, sparids and small juvenile carangids, inflict mortality on new recruits to shallow-water nursery habitats that is orders of magnitude greater than that imparted by more conspicuous larger piscivores. Because of their high abundance, a shift in the diet of minor piscivores to prey on new recruits results in a massive increase in the consumption of fish prey by the piscivore assemblage as a whole. Even if the evidence that minor piscivores switch to target new recruits was rejected, the model shows that the highly abundant minor piscivores must still exert a significant proportion of predation mortality experienced by recruiting fishes. As a broad functional group, minor piscivores occur in most aquatic systems around the globe and are likely to play an important but largely overlooked role as predators that shape communities through predation on critical early life stages of other fishes.  相似文献   

14.
Literature on trophic relationships in the Benguela ecosystem has stressed the importance of cephalopods as prey of groundfish. The groundfish community of the shelf and upper slope of southern Africa is dominated by the Cape hakes, and the results presented (1984–1991) confirm that both species of hake are important predators of cephalopods, especially taking into consideration the abundance of hake in the ecosystem. However, geographic, seasonal and species variability are evident in the patterns observed. The main prey species are Sepia spp. (predominantly Sepia australis), Loligo vulgaris reynaudii, Todaropsis eblanae and Lycoteuthis ?diadema. The last-named is an important food organism for fish. Its systematic status needs revision, however. Qualitative results of studies of cephalopod predation are also provided for kingklip and monkfish.  相似文献   

15.
《Journal of Sea Research》2009,61(4):303-309
Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20–29 mm rather than 30–39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non-tiled estuaries. These results illustrate the potential to manage fished populations using habitat provision to mitigate the effects of fishing pressure.  相似文献   

16.
There is a growing need to incorporate biotic interactions, particularly those between predators and their prey, when predicting climate-driven shifts in marine fishes. Predators dependent on a narrow range of prey species should respond rapidly to shifts in the distribution of their prey, whereas those with broad trophic adaptability may respond to shifts in their prey by altering their diet. Small pelagic fishes are an extremely important component of the diet of many marine predators. However, their populations are expected to shift in distribution and fluctuate in abundance as the climate changes. We conducted a comparative study of the seasonal diet of adult Pomatomus saltatrix over two periods (June–December 2006 and 2012) and examined the available data on small pelagic fishes biomass in a global hotspot (the coastal region of southern Angola, southern Africa) to gain an understanding of the tropic adaptability of the species. Despite a drop (630 000 t to 353 000 t) in the abundance of their dominant prey (Sardinella aurita) in the region, it remained the most important prey item during both study periods (Period 1 = 99.3% RI, Period 2 = 85.3% RI, where %RI is a ranking index of relative importance). However, the diet during Period 2 was supplemented with prey typically associated with the nearshore zone. The seasonal data showed that P. saltatrix were capable not only of switching their diet from S. aurita to other prey items, but also of switching their trophic habitat from the pelagic to the nearshore zone. These findings suggest that P. saltatrix will not necessarily co-migrate if there is a climate-driven shift in the distribution of small pelagic fishes (their dominant prey). Accordingly, understanding the trophic adaptability of predators is critical for understanding their response to the impacts of climate change.  相似文献   

17.
The consumptive effects of predators are widely acknowledged, but predation can also impact prey populations through non‐consumptive effects (NCEs) such as costly antipredator behavioral responses. The magnitude of antipredator behavioral responses by prey is determined by an assessment of risk using sensory cues, which in turn is modulated by the environmental context. We studied the detection behavior and escape response of the keyhole limpet Fissurella limbata from the predatory sea star Heliaster helianthus. Through laboratory and field experimental trials, we quantified the distance and time of predator detection behavior by the prey, and measured their active escape responses when elicited. We found that predator detection by the limpet was chiefly mediated by distance, with experimental individuals capable of detecting predator presence effectively up to distances of at least 50 cm in the field and 70 cm under laboratory conditions. Our results indicate that this prey species is able to evaluate the proximity of its predator and use it as an indication of predation risk; therefore, predator–prey distance appears to be a primary predictor of the magnitude of the antipredator response. Given the tight relationship between predator distance and prey movement and the important role herbivores can play, particularly in this ecosystem, we expect that NCEs will cascade to the patterns of abundance and composition of rocky shore communities through changes in prey foraging behavior under risk.  相似文献   

18.
The exclusively deep-sea ascidian family Octacnemidae comprises several genera in which the oral siphon has hypertrophied to form two large lips which create an “oral hood” capable of capturing motile prey. Megalodicopia hians is typical of this carnivorous family and has been reported to prey upon small epibenthic crustaceans. Distribution of M. hians in the Monterey Canyon system (36°45′N, 122°00′W) (California) was determined with remotely operated vehicles. M. hians was found sparsely to depths of at least 3800 m throughout the canyon; however, abundance was greatest within the oxygen-minimum zone (400–800 m). Eggs, sperm, and recently fertilized embryos were obtained repeatedly from adults returned to the laboratory in vivo, indicating that this species free-spawns routinely. Overall egg diameter (ovum plus chorion, plus follicle cells) was 175–190 μm—considerably smaller than previously reported for this species. Embryonic development at temperature and oxygen concentrations equivalent to the oxygen-minimum zone was 2–4 d and, embryos gave rise to typical phlebobranch “simple” tadpole larvae. Larval period was extremely variable, and settlement/metamorphosis occurred up to 3 months post-hatching. These results are discussed within the context of settlement-site selection and fertilization ecology of the species.  相似文献   

19.
The feeding ecology, growth and spatial–temporal abundance and distribution of Pomatoschistus microps (Krøyer, 1838) and Pomatoschistus minutus (Pallas, 1770) were studied between June 2003 and June 2004, based on beam trawl surveys and macrobenthic samples conducted in the Mondego estuary, Portugal. Polychaetes, molluscs and amphipods were the most important items in the diet of P. microps, while for P. minutus the dominant preys were polychaetes, mysids and decapods. Pomatoschistus microps' recruitment lasted for six months and was composed of three new cohorts per year. Pomatoschistus minutus had an uncommon long reproductive season, from April to November, and population segregation was found, corresponding to the two reproductive peaks. Populations of both species were composed mainly of 0-group individuals with sand gobies presenting a more extended life span. In the Mondego estuary, inter- and intra-specific spatial segregation occurred between the two species and between the 0+ and 1+ age groups of P. microps.  相似文献   

20.
One of the aims of Mediterranean marine protected areas (MPAs) is to increase populations of exploited species, such as the European spiny lobster (Palinurus elephas), which is considered a key species for its commercial and ecological value. Monitoring of temporal patterns in abundance of early benthic stages of P. elephas indicated that predation may be higher inside the Medes Islands MPA relative to adjacent control sites. Tethering experiments were performed to test whether predation rates actually differed within and outside the MPA. Relative mortality of recently‐settled juveniles inside the MPA was much higher than in control sites in adjacent non‐protected areas. Treatments with and without shelter indicated that predation on recently‐settled juvenile spiny lobsters was moderated by the availability of suitable shelter. The decline or absence of fish predators in the fished area may be the reason why juvenile lobsters outside the MPA experience lower predation than within the MPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号