首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

2.
On the assumption that motions of the barotropic mode are horizontally nondivergent, action of the wind stress with longshore variation on a two-layer ocean adjacent to the meridional east coast is studied. Only the equatorward wind stress is considered. Along the east coast, upwelling is induced by the direct effect of the coast and is confined in a narrow strip with the width of the order of the internal radius of deformation. The upwelling propagates poleward with the internal gravity wave speed. Coastal upwelling induced by the wind stress with longshore variation may be interpreted as the generation and propagation of internal Kelvin waves. Associated with the coastal upwelling, the equatorward flow in the upper layer and the poleward flow in the lower layer are formed as an internal mode of motions. When the bottom topography with the continental shelf and slope is taken into account, occurrence of the poleward undercurrent is delayed by a few days because of the generation of continental shelf waves. And, after the forcing is stopped, the shelf waves propagate poleward away from the upwelling region and the poleward undercurrent fully develops. At the margin of the continental shelf, another upwelling region is induced and propagates poleward.  相似文献   

3.
A five-element mooring array is used to study surface boundary-layer transport over the Northern California shelf from May to August 2001. In this region, upwelling favorable winds increase in strength offshore, leading to a strong positive wind stress curl. We examine the cross-shelf variation in surface Ekman transport calculated from the wind stress and the actual surface boundary-layer transport estimated from oceanic observations. The two quantities are highly correlated with a regression slope near one. Both the Ekman transport and surface boundary layer transport imply curl-driven upwelling rates of about 3×10−4 m s−1 between the 40 and 90 m isobaths (1.5 and 11.0 km from the coast, respectively) and curl-driven upwelling rates about 1.5×10−4m s−1 between the 90 and 130 m isobaths (11.0 and 28.4 km from the coast, respectively). Thus curl-driven upwelling extends to at least 25 km from the coast. In contrast, upwelling driven by the adjustment to the coastal boundary condition occurs primarily inshore of the 40-m isobath. The upwelling rates implied by the differentiating the 40-m transport observations with the coastal boundary condition are up to 8×10−4 m s−1. The estimated upwelling rates and the temperature–nitrate relationship imply curl-driven vertical nitrate flux divergences are about half of those driven by coastal boundary upwelling.  相似文献   

4.
Current measurements during a 32-day study period in late spring, 1977, are used to quantify the magnitude and relative importance of tidal and wind-driven motion in the interior of the Indian River lagoon, on the Atlantic coast of Florida. Harmonic analysis of the total longitudinal flow along the axis of the lagoon isolates the tidal component of the current; non-tidal flow is revealed by subtracting the tidal current from the total current, and making corrections for non-linear relationships between the current and both surface wind stress and bottom friction. A one-layer, one-dimensional model is developed to simulate wind drift. A quadratic bottom friction term with a drag coefficient of 15 × 10?3 gives results which compare most favourably with observations. Results indicate that tidal forcing explains approximately 45% of the total variance at the study site, 25 km from the nearest inlet. Local wind forcing accounts for 44% of the non-tidal flow. The remainder of the variance is attributed to freshwater outflow through the lagoon and non-local forcing.  相似文献   

5.
Non-dimensional equations of motion are derived for the A.C.C. of the barotropic mode, including the bottom friction and the horizontal eddy viscosity. Integration of the vorticity equation along a streamline leads to the zeroth order stream function which is dependent only on depth divided by Coriolis parameter. Integration of the momentum equation along a streamline yields the relation between the momentum input by wind stress and its dissipation by the bottom friction and by the horizontal eddy viscosity. This relation determines the magnitude of the stream function. It explains differences in the total transport of the A.C.C. obtained byBryan andCox (1972), though it gives only one third of the total transport obtained byKamenkovich (1972) with his vertical eddy viscosity of 102cm2 s?1. With 1 cm2 s?1 of this viscosity,Bryan andCox obtained the transport of about 650 or less than 32×106m3s?1 for constant or variable depth models, respectively. The higher transport is mainly due to broadening of the width of the A.C.C., whereas the lower value is due to its narrowing and meandering which in turn make the horizontal eddy viscosity more effective (by exercising friction on both sides of the A.C.C.) and the wind stress input smaller than the almost zonal streamlines for constant depth. In the Appendix dynamics of the bottom boundary layer is treated to give rational estimates of the bottom stress in terms of the geostrophic flow and is compared to the recent observations of the benthic boundary current in the Straits of Florida and off San Diego.  相似文献   

6.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Simple numerical experiments on two-dimensional coastal upwelling are made with emphasis on the role of non-geostrophic solenoidal field of density in the formation of double-celled circulation and multi-celled density front. Geometry of shelf and slope is not taken into account. Existence of poleward undercurrent presumably caused by the longshore variation of the large scale pressure field is also suppressed for the sake of simplicity.The results are, (1) double-celled circulation revealed in the present experiment is closely related with the internal frictional layer, where the horizontal density gradient balances with the vertical gradient of the longshore velocity and the vertical diffusion of the vorticity. (2) density front formed by the emergence of the pycnocline to the sea surface is successively advected offshoreward by the Ekman transport. (3) the pycnocline intersecting the sea surface forms the density front which is nearly vertical on account of the small scale convection. The surface currents converge at the front and construct an anti-clockwise circulation (viewed from the lee side). (4) small coefficient of eddy viscosity and strong wind stress lead the Ekman transport unstable and form a multi-celled structure in the frontal region.  相似文献   

8.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   

9.
As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565–624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is transferred to the northeastward flow exiting the region occurs in a narrow band roughly centered at 36.75°N, order 150 km north of Cape Hatteras. This transport, and thus the cyclonic circulation of the southern MAB, strengthens when the Gulf Stream is relatively close to the shelf edge, and weakens when the Gulf Stream is far from the shelf edge.  相似文献   

10.
Scaling of the equations of motion of the Antarctic Circumpolar Current indicates that the Rossby number and the Ekman number are 10−4 to 10−5 but the vertical Ekman number may reach unity in the bottom boundary layer. The equations of motion are integrated vertically from the surface to the bottom and averaged over a latitude circle. The resulting equation in the meridional direction is predominantly geostrophic, whereas the main terms of the equation in the zonal direction are the wind stress and the bottom stress. When the vertical eddy viscosity near the bottom is of the order of 102cm2/sec, the total zonal transport through the Drake Passage computed from the balance of the wind stress and the bottom stress equals 260×106m3/sec, the amount determined byReid andNowlin (1970) from observations. The northward transport reduces the eastward transport corresponding to the wind stress of the westerlies in the A. C. C. through the Coriolis' term in the vertically integrated equation of motion of the zonal direction. South of the Drake Passage, such reduction reaches about ten percent of the wind-driven transport mainly due to the peripheral water discharge. North of the Drake Passage, the northward transport may be generated by the effect of the South American coast which prevents free eastward movement of the A. C. C., causing a wake to the east. This transport may contribute to a part of the northward transport of the bottom water postulated byMunk (1966). The effect of the horizontal eddy viscosity in the zonal transport equation is negligible except near the Antarctic coast, if the eddy viscosity is less than 109cm2/sec.  相似文献   

11.
The mesoscale dynamics of the Scottish side of the Faroe–Shetland Channel have been investigated using synoptic in situ and remote sensing observations. A cold core cyclonic eddy, identified from an AVHRR image, had a diameter of about 50 km and surface current speeds of up to 50 cm s-1; it appeared to be attached to the 800 m isobath as it moved north-eastward along the edge of the channel at about 8 cm s-1. Speeds in the slope current were about 50 cm s-1 but increased to 70 cm s-1 where the current was compressed by the eddy. Offshore, over the 1000 m isobath in the cooler water, speeds in the current were slower (ca. 20 cm s-1). North-west of the Shetlands the offshore edge of the slope current was deflected across the channel for a distance of about 70 km from the shelf edge. The speed of drifters in the slope current increased to over 60 cm s-1 as they moved anti-cyclonically around this deflection. CTD profiles suggest that the movement of the surface waters was mirrored in the deep water of the channel. The deflection carried a very large quantity of North Atlantic Water into the central part of the channel; its cause and ultimate fate are not known, although it is likely to have had a significant impact on the dynamics of the channel.  相似文献   

12.
A storm moves with a constant speed parallel to a stationary geostrophic current which flows only in the upper layer of a two-layer, infinite ocean. It is assumed that the lower layer is motionless. The quasi-geostrophic approximation is valid for a moving speed less than 4 ms–1 for a storm radius of 100 km. The primary change of the upper layer thickness is caused by the wind stress divergence and the time integral of the wind stress curl. A cyclonic storm generates upwelling in its wake. The effect of the stationary flow similar to a western boundary current is minor by an order of magnitude and noticeable only on the left edge of the flow. Scaling of equations of motion and continuity for a more general upper geostrophic flow leads to expansion with a parametera 2=gH m(fL)–2, whereg is reduced gravity,H m is the maximum thickness of the upper layer,f is Coriolis' parameter andL is the storm radius. The zeroth order perturbations of transport and thickness do not include the stationary flow which appears only in the first order perturbations ina 2. When there is a coast, the change of the interface near the coast is dependent on the time integral of the wind stress component parallel to the coast, thus leading to upwelling or downwelling according to the center being to the left or right of the coastline.  相似文献   

13.
The subsurface counter current beneath the Tsushima Warm Current is simulated using a three-dimensional circulation model. The model well reproduces the counter current beneath the Tsushima Warm Current on the shelf break. The counter current appears as nearshore parts of the subsurface clockwise circulations from spring to early winter. The clockwise circulations are separated by developed shelves such as the Oki Spur and the Noto Peninsula, thus the counter current is not a continuous flow along the Japanese coast in this model. The vertical structure of the counter current can be explained by a density structure with the thermal wind relationship. The permanent and seasonal pycnoclines form mutually opposite horizontal density gradients near the Japanese coast in summer. Such a density structure results in a speed maximum of the counter current away from the bottom. It is remarkable that the second baroclinic mode is dominant in nearshore parts of the subsurface clockwise circulations in summer, which are attributed to the density structure. Similar density structures are also found in some coastal regions of the world oceans where subsurface counter currents are expected.  相似文献   

14.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

15.
Beach-nearshore profiles combined with beach and surficial sediment samples were analyzed in conjunction with wave, current, littoral drift and sea-level data to determine the effect of bedrock on morphodynamic processes within the littoral zone of Alexandria on the Mediterranean coast of Egypt. This 14.5-km-long littoral cell is bounded by pronounced embayments and pocket beaches separated by headlands which prevent bypassing of beach sands, in effect making this cell a large, semi-closed basin. The compartmented nature of this cell acts together with the rough irregularity of the rocky seafloor to trap a thin veneer of sediment (<3 m thick), showing proportional mixing between two sedimentary provinces. A modern fine-grained sediment facies consisting of mixed carbonate/siliciclastic sand flanks most of the nearshore zone down to a depth of 8–10 m. Beyond this depth, considered to be the depth of closure, a relict late Pleistocene to mid-Holocene coarse-grained facies composed of biogenic carbonate sand is found. Along a short section of the coastline (km 3–6), the coarser sediment also occupies the nearshore zone. Over most of the study area the two sediment types are mixed in various proportions, largest mixing coinciding with poorest sorting. Profile analyses revealed seasonal changes in sediment volume along the coast which closely follow the cyclicity of seasonal changes in wave climate. The present shoreline orientation, headlands and rough, irregular rocky seabed are reflected in the erosion/accretion pattern, sediment characteristics, and the reversibility of longshore currents and littoral drift. Although there is a marked deficiency in the sediment balance, the sand budget for this cell, including artificial material (2.339*106 m3) has increased slightly by 0.041*106 m3 year–1 as a result of engineering works carried out to widen the coastal road (Corniche). In addition to the physical properties of the bedrock (degree of induration), the accelerating sea-level rise during the Holocene and human influences, the modern morphology of the coast, the erosional seabed features in the nearshore zone, and the texture of seabed sediments are all controlled by the original geometry of the coast which consisted of an elevated subaerial ridge.  相似文献   

16.
《Coastal Engineering》1986,10(3):275-288
Two sets of nearshore current data are available from measurements made at the Coastal Engineering Research Center's (CERC) Field Research Facility (FRF). These data are examined to characterize the nearshore currents at the FRF site and to identify the processes which contribute to the total current vector. The data indicate that local winds and atmospheric pressure fields can be important factors contributing to nearshore currents. Quantitative evidence is presented which shows a direct relationship between the mean longshore current and mean longshore wind speed. For coastal engineering studies which require estimates of nearshore currents, it is recommended that meteorological factors be included in the estimation techniques.  相似文献   

17.
One hundred and twelve stations of CTDO2 and LADCP were collected in the Agulhas Current system as part of the Agulhas Undercurrent experiment (AUCE) in March 2003. Along an offshore section, at approximately 35.6°S and 27.3°E to the northwest of the tip of the Agulhas Plateau, an unusual feature was revealed between 2200 and 3500 m depth, imbedded in the northward moving NADW layer. An anomalously high salinity of 34.83, 0.03 saltier than the surrounding water, was observed. Maximums in the potential temperature and oxygen were also found, with isotherms dropping by about 250 m over 50 km and a doming of the oxygen layers. From the convex lens structure of the neutral surfaces, we conclude that we sampled an anticyclonic eddy of NADW. Since the LADCP data reveal deep velocities up to 20 cm s−1, yet no anticyclonic circulation, whereas the geostrophic velocity referenced to the bottom shows a weak anticyclonic circulation, we inferred that we sampled the outer edge of the eddy and not its core. From an analysis of the water properties within the eddy and a comparison with known properties in the SE Atlantic Ocean and SW Indian Ocean, we conclude that the eddy was formed in the Agulhas Retroflection region. We speculate that the eddy was the result of an instability in the NADW slope current, which flows from the SE Atlantic around the Agulhas Bank. A deeply penetrating Agulhas Ring spun up the deep waters, pinching off an eddy, which later detached from the slope current and was carried southward. Once offshore, it coupled with the surface Agulhas Return Current, whose meandering path advected the eddy northeastward and ejected it over the Agulhas Plateau.  相似文献   

18.
19.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   

20.
A simple three-dimensional model of a time-dependent coastal upwelling is discussed for time scales of several days to a week, with the linear, two-layer, flat-bottom and ?-plane approximation. Emphasis is placed on the effects of longshore scales determined by the longshore variabilities in the wind stress distributions. The responses of the inshore motions are shown to depend critically on the longshore scales. For a certain wide range of the scales, the system reveals dominantly baroclinic responses and a full development of the poleward coastal undercurrent without β effect. Somewhat detailed discussions are given on the coastal upwelling, the coastal jet and the poleward undercurrent, which are interpreted simply as the orbital velocities of the forced Kelvin-type waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号