首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper is a contribution to the study of two-ribbon flares. A variety of observational material, i.e. Hα pictures, radio spectrum in the frequency band of 150–1000 MHz, radio map at 6 cm, fluxes at other frequencies, magnetograms and X-ray flux in a broad energy interval, enabled us to study the development of the 16 May, 1981 flare. The onset of the flare could be described by the model of Van Tend and Kuperus. A diminishing of the magnetic shear during the activation of the filament was observed. From radio and X-ray data it was found that pulsed acceleration took place in the region under the rising filament, the electrons propagating in a limited region both upwards to greater heights and downwards into the footpoints. Internal oscillations of the filament were observed. A manifestation of the primary process of interplanetary shock-wave generation was found. The 6 cm radio sources could be localized in the footpoints of magnetic loops.  相似文献   

2.
The H velocity field at 0516 UT during the eruption of the X1.5/3B flare in the active region E58 N11 (Boulder 3106) on 1981 May 13, obtained with the horizontal solar spectrograph of Yunnan Observatory is given in this paper. A comparative analysis of the velocity field with the magnetic field shows that the velocity field is related to the gradient and neutral line of the magnetic field and the brightness of the flare maximum changes in the velocity field of ±15 km/s occurs at the location of greatest magnetic field gradient.

The neutral line of the magnetic field (h = 0) basically matches the zero velocity line (v = 0) between the two bright ribbons. But they do not match between the two bright knots where the filament is twisted and ascends. The spectral lines show the sloping morphology, from which we deduced the dynamical parameters of the twist of the rising filament.  相似文献   


3.
Excepting intermittent type III activity, all the radio events over the frequency range 8–8000 MHz accompanying the initial stage of the 3B flare of 13 May, 1981 had their onset in a 2-min interval immediately preceding the peak of an impulsive Hα brightening (kernel) well away from the main flare. This kernel is identified as one footpoint of a loop of magnetic flux whose other end terminated in a transient brightening in an adjacent active region.  相似文献   

4.
A study is made of the relative importance of the various energy loss mechanisms for the long-decay event of 7 September, 1973, using spectral scans in the 400 Å–1335 Å range. This spectral range contains many of the important electron density and temperature diagnostic line ratios for the solar transition zone. We refine earlier analyses of the flare energy budget using more detailed emission measure curves and density diagnostics. We examine the constant pressure assumptions used in both coronal loop models and in the interpretation of observations in terms of flare energetics. We find that much of the upper transition region emission originates in cooling loops. Radiative losses are found to dominate.  相似文献   

5.
This paper investigates the physical state of the photosphere in the main phase of the two-ribbon solar flare on June 3, 1979. The derived models show that the photosphere was in a disturbed state for a long time during the main phase of the flare. In the models, the temperature in the upper photospheric layers is higher and that in the lower layers is lower than in the quiet-sun model atmosphere. During the flare, the heating extends to the lower photospheric layers, and the upper layers cool down. A comparison of the obtained models to those for the two-ribbon solar flare on October 7, 1979, shows that the height distributions of the temperature in the main phase of the flares are strongly different.  相似文献   

6.
We present observations of the flare of May 14, 1981, which can be classified as a three-ribbon flare. After a detailed analysis in metric, decimetric, microwave, optical, and X-ray ranges we propose that the event was caused by a reconnection process driven by erupting filament. The energy was liberated in the current sheet above the filament in the region between the erupting flux and the overlying field. It is shown that plasma microinstabilities develop as the plasma enters the current sheet. The observations indicate that during the precursor phase a certain low-frequency turbulence, such as ion-accoustic turbulence had to be present.The reconnection rate was growing due to the increasing tension of the stretched overlying field. It is shown that the reconnection proceeded in the Sonnerup-Petschek regime during the precursor, and changed to the pile-up regime in the fast reconnection phase, when the maximal lateral expansion (50 km s–1) of the H ribbons was observed. The proposed process of reconnection driven by an erupting filament can be applied to three- and four-ribbon flares.  相似文献   

7.
The behaviour of the flare in the period of enhancement and maximum of hard X-ray, microwave and decimetric type IV continuum is analysed. The elongation of the H ribbons and microwave source disclose that the energy release site was shifting through a system of loops with a velocity less than 200 km s-1, and that the energy was carried down the field lines with a velocity of about 1000 km s-1, implying the thermal conduction front mechanism of energy transport. Several processes of energy release are considered and it is concluded that an explanation in terms of succeeding interactions of neighbouring loops, involving fast reconnection of their poloidal components is in best agreement with the observations.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

8.
The main burst of the microwave burst of 1981 May 13 has a smooth, symmetric shape, the lifetime of the main burst is about the same in different wavelengths, the total duration is also about the same and its spectrum has a flat portion. This could be a new gradual type of burst. In this paper, a thermal model is proposed for the emission of this type of burst.  相似文献   

9.
We propose that when all sources on the solar disc are taken into account, the S component at 10.7 cm wavelength is dominated by thermal free-free (bremsstrahlung) emission. It is not produced only in the vicinity of sunspots; more than 60% of the total flux may be due to a widely-distributed emission associated with the hot complexes of activity. Using a model for the solar atmosphere based upon an assumption of weak (or vertical) magnetic fields, the spectrum of the S-component is calculated and its sensitivity to changes in the model parameters investigated. Variation of the thicknesses of the chromosphere, transition region and mixed zone cause only small changes in the S-component spectrum; there is a much stronger dependence upon the plasma density, particularly at the base of the corona. The behaviour of the S-component at 10.7 cm wavelength is examined in more detail. We find that the largest contribution to the 10.7 cm flux originates in the low corona, that structural changes affect it only slightly, but that it is strongly density-related. This dependence upon few quantities, together with its relative localization in the low corona, contributes to the usefulness of the 10.7 cm flux as an index of solar activity.Summer Student Worker, 1988.  相似文献   

10.
We present high resolution detailed observations of the class 3N two-ribbon flare of 1973, July 29 (McMath 12461), which was associated with the disappearance of a large filament (disparition brusque). This flare occurred in a diffuse bipolar magnetic region completely devoid of sunspots, and was further associated with a type IV radio burst and a soft X-ray event. Extensive H filtergraph, spectrograph and magnetograph records during the main phase of the flare suggest that downfalling and streaming material is present on both ribbons for several hours during the H emission enhancement, but only at a small number of points located both on and off the ribbons. We find a poor spatial correspondence between bright emission knots in the H ribbons and the positions of the observed downward motion. We conclude that the model of infall-impact of Hyder (1967a, b) is not consistent with our filtergraph and spectrograph observations.Presently at the University of Michigan, Ann Arbor, Michigan.  相似文献   

11.
We studied changes in thermodynamic parameters of the chromosphere at the initial stage of the two-ribbon solar flare accompanied by a surge that occurred on September 4, 1990. The inhomogeneous semiempirical models of the flare chromosphere and surge are constructed for four observation moments. The spectra were obtained with the ATsU-26 horizontal solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Terskol Peak). Photometric transections of the spectra passed through two bright kernels of one of the flare ribbons and through the surge. The comparison of the observed profiles of the line Hα in the solar active and quiet-Sun regions reveals the substantial emission in the line wings (up to 1–1.2 nm) with a residual intensity of 0.6–0.77 at the center of the line profiles. Calculations within the two-component models of the chromosphere have shown that this may be the evidence of the existence of the details (unresolved by the telescope and occupying 5–12% of the total area) with a deep heating of the chromosphere layers. A strong asymmetry of the line profiles and the shift with respect to the line profile for the quiet-Sun region are explained by peculiarities of the line-of-sight velocity distribution over the height. It is found that the motion is directed to the observer in the upper chromosphere (10–30 km/s) and from the observer in the lower chromosphere (5–20 km/s) for the larger part of the active region under study. According to the models calculated for the surge, the line-of-sight velocities reach a value of 70 km/s.  相似文献   

12.
The large microwave burst of 1981 April 1, which was accompanied by both hard X-ray and γ-ray emissions, was analyzed to study the acceleration of particles in the impulsive phase. The analysis suggests the following results. (1) Electrons were accelerated up to energies of several hundred keV in a low loop. On the other hand, electrons were accelerated to relativistic energy without injection of pre-accelerated electrons near the top of a large loop where energetic ions were also probably accelerated. (2) The mechanism for accelerating electrons to relativistic energy and also ions was different from that for accelerating electrons up to energies of several hundred KeV and was closely related with upward motion of a flare loop.  相似文献   

13.
The corresponding field configurations of the solar isothermal atmosphere obtained from a series of non-constant shearing magnetic fields after considering both the gravity and gas pressure are examined and compared. When the shearing magnetic field increases, magnetic islands will appear, followed by shearing, quasi-three-dimensional field structures approaching the open state and with almost anti-parallel field lines. It is possible that this is related to the initial phase of a two ribbon flare.  相似文献   

14.
We describe visual observations of a white light flare which displayed a pink color in a part of the flare which covered a sunspot umbra. We then show that visible pink tint, if attributable to strong H emission, requires a minimum equivalent emission line width of approximately 140 A, or three times larger than in any flare previously measured. Such extreme line broadening might be interpreted to result from flare penetration to unusually high chromospheric densities ( 1014 cm–3), or from anomalous Stark broadening due to turbulent electric fields in an unstable plasma (Spicer and Davis, 1975) at lower density.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

15.
In this paper, we are primarily concerned with the solar neutron emission during the 1990 May 24 flare, utilizing the counting rate of the Climax neutron monitor and the time profiles of hard X-rays and γ-rays obtained with the GRANAT satellite (Pelaezet al., 1992; Talonet al., 1993; Terekhovet al., 1993). We compare the derived neutron injection function with macroscopic parameters of the flare region as obtained from the and microwave observations made at the Big Bear Solar Observatory and the Owens Valley Radio Observatory, respectively. Our results are summarized as follows: (1) to explain the neutron monitor counting rate and 57.5–110 MeV and 2.2 MeV γ-ray time profiles, we consider a two-component neutron injection function,Q(E, t), with the form $$Q(E,t) = N_f {\text{ exp[}} - E/E_f - t/T_f ] + N_s {\text{ exp[}} - E/E_s - t/T_s ],$$ whereN f(s),E f(s), andT f(s) denote number, energy, and decay time of the fast (slow) injection component, respectively. By comparing the calculated neutron counting rate with the observations from the Climax neutron monitor we derive the best-fit parameters asT f ≈ 20 s,E f ≈ 310 MeV,T s ≈ 260 s,E s ≈ 80 MeV, andN f (E > 100 MeV)/N s (E > 100 MeV) ≈ 0.2. (2) From the Hα observations, we find a relatively small loop of length ≈ 2 × 104 km, which may be regarded as the source for the fast-decaying component of γ-rays (57.5–110 MeV) and for the fast component of neutron emission. From microwave visibility and the microwave total power spectrum we postulate the presence of a rather big loop (≈ 2 × 105 km), which we regard as being responsible for the slow-decaying component of the high-energy emission. We show how the neutron and γ-ray emission data can be explained in terms of the macroscopic parameters derived from the Hα and microwave observations. (3) The Hα observations also reveal the presence of a fast mode MHD shock (the Moreton wave) which precedes the microwave peak by 20–30 s and the peak of γ-ray intensity by 40–50 s. From this relative timing and the single-pulsed time profiles of both radiations, we can attribute the whole event as due to a prompt acceleration of both electrons and protons by the shock and subsequent deceleration of the trapped particles while they propagate inside the magnetic loops.  相似文献   

16.
Spectrograph and multiple-band polarimeter observations of the 24 April 1981 white-light flare indicate the presence of an optical continuum with intensity increasing strongly below 4000 Å. The flare emission (lines and continuum combined) is unpolarized and, at 3600 Å, exceeds the brightness of the background solar surface by 360%. Analysis of the spectrum between 3600 and 8200 Å, at a location three arc sec from the brightest point in the kernel, yields a probable temperature of 6700 K for the continuum emitting layer. The wavelength dependence of the continuum indicates emission by both negative hydrogen (H?) and Balmer continuum, with the H? probably originating in the upper photosphere at a height (above τ5000 Å = 1) in the range 200–300 km. Analysis of the Balmer lines and continuum yields an electron density 5.3 × 1013 cm?3 and a second-level hydrogen column density 1.1 × 1016 cm?2. The peak radiative output integrated over wavelength is 6.1 × 1027 erg s?1. The observed continuum intensity, if originating at a height of 300 km, implies an energy loss rate of 103 erg s?1 cm?3.  相似文献   

17.
X-ray and H observations of an erupting filament, discussed herein, and other observations of the associated flare on 1980 May 21, suggest that an erupting filament played a major role in the X-ray flare. While Antonucci et al. (1985) analyzed the May 21 flare as one of the best cases of chromospheric evaporation, the possible contribution from X-ray emitting erupting plasma has been ignored. We show that pre-heated plasma existed and may have contributed part of the blue-shifted X-ray emission observed in the Caxix line, which was formerly attributed solely to chromospheric evaporation. Thus it remains an open question - in two-ribbon flares in particular - just how important chromospheric evaporation is in flare dynamics.  相似文献   

18.
A large limb burst occured on 1981 April 27, 0720 UT. A large eruptive loop prominence was observed by us at 0816–0951. At 0829.5 and 0833 the loop showed an abnormal flat top, and simultaneously, radio emission at 3.2 cm showed an abnormal absorption. To explain these features, we supposed that a dense cloud moved in front of the top of the Hα loop. We showed that if the cloud has a thickness of 104km and if it has an electron density 10?9 times that in the active region, then the abnormal absorption at 3.2 cm can be explained by collisional damping.  相似文献   

19.
In a search for linear polarization effects, 37 profiles of the H line emitted in the 16 May 1991 flare have been analyzed. Linear polarization is clearly present in the central part of line. On average, the degree of polarization is 7 %, but it reaches 20 % in regions with lower H ga emission. Generally the orientation of the plane of polarization coincides with the flare to disk center direction, except for sections where the H ga line has the characteristic form observed in moustaches. We believe that the linear polarization observed in the 16 May 1991 flare was caused by bombardment of the chromosphere by beams of accelerated particles, protons in the main part of the flare and electrons at locations where the H ga line has the characteristic moustache structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号