首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The literature pertaining to volume change during diagenesis of clastic sediments is reviewed with respect to the problem of calculating pre- and syn-compaction thicknesses of sediments for basin reconstruction and stragraphic correlation studies. Four major mechanisms for volume change are identified: mechanical compaction, mechanical dissolution, chemical dissolution and phase change. The first two of these are found to be strongly dependent on the effective stress whilst the latter two show at least a pressure dependence. Quantification of the relationships between porosity and depth of burial of a sediment seems to be possible only for specific examples of the first of these processes at present. This quantification is dealt with in the accompanying related publication.  相似文献   

2.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

3.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

4.
We model the evolution of a salt diapir during sedimentation and study how deposition and salt movement affect stresses close to the diapir. We model the salt as a solid visco-plastic material and the sediments as a poro-elastoplastic material, using a generalized Modified Cam Clay model. The salt flows because ongoing sedimentation increases the average density within the overburden sediments, pressurizing the salt. Stresses rotate near a salt diapir, such that the maximum principal stress is perpendicular to the contact with the salt. The minimum principal stress is in the circumferential direction, and drops near the salt. The mean stress increases near the upper parts of the diapir, leading to a porosity that is lower than predicted for uniaxial burial at the same depth. We built this axisymmetric model within the large-strain finite-element program Elfen. Our results highlight the fact that forward modeling can provide a detailed understanding of the stress history of mudrocks close to salt diapirs; such an understanding is critical for predicting stress, porosity, and pore pressure in salt systems.  相似文献   

5.
Pore pressures in the seabed are extremely sensitive to any imposed stress because of the low permeabilities commonly exhibited by marine sediments. Consequently, the measurement of sediment pore pressures can be used to infer either the nature of the imposed stress (if the sediment properties are known) or the physical properties of the sediment (if the imposed stresses are known). Stresses of many different types may be exerted on the seabed either through hydrostatic forces (e.g. tidal and wave effects), or directly by lithospheric forces (e.g. tectonic and thermal forces). Several techniques for measuring in situ pore pressures in the upper few metres of sediments have been developed, and one instrument, the PUPPI, will operate autonomously in water depths up to 6000 m. Basic sediment properties and processes can already be inferred from pore pressure responses using this technique. However, further application and development could greatly enhance its capability, especially for long-term monitoring of sediment conditions. In this Chapter, pore pressure measurement techniques are briefly reviewed and problems are highlighted. An outline is given of some of the many ways in which pore pressure measurements could be used to gain further insight into geological processes and to determine some of the pertinent sediment properties more accurately for engineering applications.  相似文献   

6.
Mechanical compaction is the main porosity-reducing process in sandstones, including high-reservoir-quality rigid-grain sandstones. For such sandstones, the extrapolation of theoretical or experimental compaction algorithms needs calibration with rocks having well constrained burial histories. Evaluating the compaction of these rocks is achieved by comparing current intergranular volume (IGV) with depositional IGV, which is strongly dependent on sorting. However, because sandstone sorting is difficult to measure accurately, its impact on depositional porosity and compaction state is largely underestimated. We use the quartzarenites of the Oligocene Carbonera Formation in the subsurface of the hydrostatically-pressured Llanos basin to illustrate the importance of sorting when evaluating the compaction of rigid-grain sandstones. IGV and sorting were measured in core samples using a combination of transmitted-light and cathodoluminescence images, resulting in improved accuracy over standard procedures. The compaction state of clean quartzarenites at given depths is best described using IGV-versus-sorting plots, which are used to derive compaction curves for specified sorting values. The IGV-versus-sorting trends are displaced to lower IGV values with increasing burial depth. The differences in IGV caused by differences in sorting exceed the differences in IGV resulting from 1000 m of burial, illustrating the high impact of sorting when evaluating compaction. Contrasting with published experimental results, the compaction of the Llanos basin ductile-grain-poor quartzarenites is independent of grain size, and grain rearrangement is the main compaction mechanism during the first ∼1.6 km of burial. Based on the Llanos data, we have generated IGV-versus-depth curves for clean pure quartzarenites of specific sorting, which can be used to predict their maximum primary porosity up to moderate burial depths. Differences with other published burial curves are probably related to unaccounted variations in sorting, ductile-grain content and framework-strengthening cements. However, the Llanos basin quartzarenites contain virtually no cements, explaining their high degree of compaction relative to other rigid-grain sandstones, and making them ideal to isolate the effects of compaction on the IGV of quartzarenites. The Llanos basin data suggest that, below ∼2.5 km of depth, clean well- to moderately well sorted quartzarenites continue reducing their IGV by mechanical compaction below the 26% limit, which should apply only to extremely well sorted, rigid grain, uncemented sandstones.  相似文献   

7.
Abstract

The mechanical response of a sediment to an applied stress is significantly affected by variations of material properties, state conditions, and stress states. These stress state and conditions are utilized to infer input parameters for advanced soil constitutive models. Parameters such as void ratio and effective stresses have been readily inferred from shear-wave velocities under low-strain conditions. Thus, this research aimed to develop a shear-wave velocity-based constitutive model within a critical state soil mechanics framework to predict the undrained triaxial behavior of fine-grained sediments. Laboratory tests were performed for sediment samples ranging from silt-predominant to clay-predominant sediments. As result, a new two-term power function was developed that determined mean effective stress as a function of shear-wave velocity. By virtue of this new power function, the Original Cam Clay and Modified Cam Clay critical state models were adapted to estimate the stress-strain behavior and stress paths under undrained conditions, in terms of shear velocity. In addition, correlations were developed using the state and material properties to predict the input model parameters. The developed correlations allow broad application of the proposed framework to different sediment types in which clay and silt are the dominant deposits.  相似文献   

8.
This study investigates petrophysical and acoustic properties of experimentally compacted reconstituted samples of seal sequences from the southwestern Barents Sea. The aggregates were collected from drill cuttings of mudstone and shale formations of two exploration wells, 7220/10-1 (Salina discovery) and 7122/7-3 (Goliat field). The washed and freeze-dried samples were characterized for grain size distributions, geochemical analyses, and mineralogical compositions. A total of 25 compaction tests (12 dry and 13 brine-saturated) were performed with a maximum effective vertical stress of 50 MPa. The laboratory measurements demonstrated that petrophysical and acoustic properties of argillaceous sediments can change within a sedimentary basin and even within a given formation. The results show that the collected aggregates from Goliat field are compacted more compared to Salina discovery. The maximum and minimum compaction are measured in samples collected from Snadd and Fuglen formations, respectively. The final porosity of brine-saturated specimens varies between 5% and 22%. The ultrasonic velocity measurements depict that samples with the same porosity values can have a broad range of velocity values. The resulting compaction trends in this study were compared to published compaction curves for synthetic mixtures of quartz and clay. All compaction trends show higher porosity reduction than the silt fraction with 100% quartz. Comparison of experimental compaction result of each mudstone and shale aggregate with its corresponding acquired well log data helps to delineate the burial history and exhumation in the study area. A net exhumation of 950 m and 800 m is estimated at Salina and Goliat wells, respectively. The outcomes of this study can provide insights for hydrocarbon prospect discovery in a pre-mature sedimentary basin in terms of exploration and production, and also for geological CO2 storage sites. The experimental results may provide information for well log and seismic interpretation, basin modeling and seal integrity of investigated horizons.  相似文献   

9.
The stress system induced the weight of a sediment and the pore fluid it contains, termed the passive stress system, is capable of deforming the sediment. This volumetric deformation is examined with respect to the evolution of porosity and permeability during burial. The effect of this self deformation on the shape of growth faults and normal faults in extensional terrains is considered.  相似文献   

10.
The results presented in this paper are the first published estimates of the complete stress tensor in the Cuu Long and Nam Con Son basins, offshore Vietnam. We analysed in situ stress and pore pressure fields in the sedimentary formations using data from petroleum exploration and production wells to evaluate the stress state in these basins. The data were obtained from the seafloor to 4300 m burial depth and include both hydrostatic and overpressured sections. Minimum horizontal stresses were obtained from extended leak-off tests and mini-fracture tests. Maximum horizontal stresses were estimated from drilling-induced fracture parameters and borehole breakout widths in twelve wells using rock properties measured in the laboratory or estimated empirically from wireline logs. Seven data points are located in sediments, and seventeen data points in igneous basement rocks at depths greater than 3000 m.The estimated magnitudes of σH are 70-110% of the σv magnitudes. Considering the errors in the stress magnitude estimates, their relative magnitudes suggest that a borderline normal/strike-slip stress regime presently exists in normally pressured sequences of the Nam Con Son and Cuu Long basins. Of the twenty-four data points, twenty have effective stress ratios at a critical stress state for faulting on the assumption that there are faults present that are optimally oriented for failure with friction coefficients of ∼0.5. The results suggest that the stress state in these basins is generally critical.  相似文献   

11.
海底浅表层(小于1 m)沉积物的物理性质,如粒度、孔隙度、密度等是海洋沉积学研究和海洋工程地质分析的重要内容,目前主要基于有限的海底取样或原位测试获取这些沉积物的物理性质。浅地层剖面是基于声学信号(频率几千赫兹)在沉积物中的传播得到可反映沉积地层结构的数据,其中的一些声学参数,如海底反射系数、波阻抗等与沉积物物理性质密切相关。如何充分而有效地利用浅地层剖面资料,反演得到剖面覆盖区海底浅表层沉积物的物理性质参数,极具科学意义和应用价值,且基于声学属性反演沉积物物理性质是当前研究的热点。为此,本文基于渤海LD16-3CEPA至LD10-1PAPD路由段的浅地层剖面数据和海底表层沉积物的实测物理参数,利用Biot-Stoll模型建立研究区海底反射系数和沉积物物理性质之间的关系,并基于浅地层剖面数据计算得到的海底反射系数,反演了研究区海底浅表层沉积物的孔隙度、密度、平均粒径等物理性质参数。其中反演的孔隙度、密度、平均粒径与实测孔隙度、密度、平均粒径基本相符,偏差度基本都在20%的偏差范围内,表明该反演方法在该区的应用是可行的。  相似文献   

12.
The soil permeability of many natural marine sediments decreases with depth because of consolidation under overburden pressure. This is accompanied by a decrease in porosity and void ratio that also affect the permeability. Conventional theories for wave-induced soil response have assumed a homogeneous porous seabed. This paper presents a new approach for the wave-induced response in a soil matrix, with variable permeability as a function of burial depth. The soil matrix considered is unsaturated and anisotropic, and is subject to a three-dimensional wave system. The pore pressure and effective stresses induced by such a system are obtained from a set of equations incorporating a variable permeability. Verification is available through reduction to the simple case of uniform permeability. The results indicate that the effect of variable soil permeability on pore pressure and vertical effective stress may be significant, especially in a gravelled seabed and for unsaturated sandy soils.  相似文献   

13.
Understanding the evolution of abnormally high fluid pressures within sedimentary formations is critical for analysing hydrogeological processes and assessing drilling risks. We have constructed a two-dimensional basin model and have performed numerical simulations to increase the understanding of the history of fluid flow and shallow overpressures in the Pleistocene and Holocene formations in the Ursa basin, deepwater Gulf of Mexico. We measured physical properties of sediments, such as porosity and permeability, in the laboratory and estimated in situ pore pressures from preconsolidation pressures. We obtained porosity–effective stress relationships from measurements of bulk density, grain density and preconsolidation pressures in the laboratory. Porosity–effective stress relationships were also obtained from downhole density logs and measured pore pressures. The porosity–effective stress and porosity–permeability relationships obtained were applied in two-dimensional basin simulations. Results showed that high pore pressures developed shortly after sediment deposition. Peaks in pore pressure ratios were related to high sedimentation rates of mass transport deposits and the incision of the Ursa channel. Lateral flows from the area where the overburden is thick towards the area where it is thin have occurred at least since 30 ka. Present pore pressure and temperature distributions suggest that lateral flows play a role in re-distributing heat in the basin.  相似文献   

14.
北极楚科奇海海底表层沉积物有机碳的生物地球化学特征   总被引:5,自引:0,他引:5  
1999年7月和2003年7月在北极科学考察中获取的楚科奇海海底表层沉积物有机碳质量分数的分析结果表明,楚科奇海海底表层沉积物有机碳平均质量分数约为1.41%,远高于我国东海和世界部分大陆架沉积物;有机碳/氮比值为8.69,反映了有机物以海洋自生为主的混合性来源;有机碳与有机氮之间显著相关(R=0.93);有机碳质量分数与粒度明显相关(R=0.71),细粒粘土质沉积物中的有机碳质量分数高于砂质沉积物的;在水深200m以内,有机碳质量分数随水深加大有一定的增加;有机碳质量分数与生源硅质量分数明显相关;有机碳质量分数随纬度变化较小。结合2次北极考察的实测结果,对楚科奇海海底表层沉积物中的有机碳来源进行了初步讨论,认为沉积有机碳埋葬可能主要取决于生物泵。  相似文献   

15.
Sabellariid worms, such as Phragmatopoma lapidosa, are sessile suspension feeders that attach to exposed hard bottom and serve as foundation species for worm reefs which are complex, multifaceted habitats. While worm reefs are adapted to dynamic sedimentary environments, burial of these habitats by beach nourishment projects is a concern. This study determined duration and depth of burial that can be tolerated by P. lapidosa without death. Worm rock samples were buried in sand at 1–10 cm (1-cm intervals), and at 15, 25 and 40 cm for the duration of 72, 144, and 216 h and then surveyed for initial mortality after burial and one week after removal of sediment (latent effects). Initial mortality was similar across all burial depths for the 72-h duration with values ranging from 8.3% (±0.8 SE) for 1 cm to 24.0% (±8.0 SE) for 10 cm of sediment. As burial duration increased to 144 h, mortality generally increased as burial depth increased with an average mortality for 2 cm of sediment of 23.5% (±5.3 SE) increasing to 96.0% (±14.3 SE) with 40 cm of sediment. The mean percent mortality for burial samples in the 216 h treatment varied from a low of 71.2% (±3.3 SE) for 1 cm depth to a high of 100% (±0 SE) for 10, 15, 25, and 40 cm depths. Mortality for most treatments also increased over time after removal of sediment indicating latent effects of burial stress.  相似文献   

16.
We report on a marine electromagnetic (EM) survey across two portions of the New Jersey continental margin that have been previously shown to contain buried paleo-channels. The EM method used provides bulk porosity estimates to depths of around 20 m below the seafloor and is thus able to place porosity constraints on the nature of the channel infill and the contrast in physical properties across the channel boundaries. Our data show that a key condition for the channels to have an electrical signature is that they incise an underlying regional unconformity, R, thought to represent a subaerially eroded surface, exposed during the late Wisconsinan glaciation. Channels that cut R are seen through increases in apparent porosity. Another seismically imaged channel sequence, which lies within the outer-shelf sediment wedge sequence above R, does not have an electrical signature, indicating that the sediments above and below the channel boundaries have similar physical properties.  相似文献   

17.
The Kachchh sedimentary basin in the western continental margin of India is a peri-cratonic rift basin which preserves a nearly complete rock record from Middle Jurassic to Recent, punctuated by several stratigraphic breaks. The Cenozoic sediments exposed in the western part of the Kachchh mainland extend offshore into the present-day continental shelf. The unique feature of the outcropping area is a nearly complete, richly fossiliferous and easily accessible Cenozoic succession. Detailed field mapping and litho-biostratigraphic studies have made it possible to identify the chronostratigraphic units, map them in the field and extend the correlation into the offshore, aided by the development of continuously recognizable key biostratigraphic horizons and time boundaries. Detailed field mapping of key sections integrated with the litho-biostratigraphic information has helped in working out a sequence stratigraphic framework for the Cenozoic succession in the basin. The succession comprises a first-order passive margin sequence. Excellent biostratigraphic control has enabled identification of unconformities of various magnitudes which in turn have helped in mapping 5 second-order and four third-order sequences. Each sequence is discussed with respect to its extent, nature of sequence boundaries, sedimentary fill, key sequence stratigraphic surfaces and depositional setup, to understand the Cenozoic sequence stratigraphic architecture of the basin.  相似文献   

18.
Permeability–porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability–porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples.  相似文献   

19.
We investigated the composition, recycling, and mass accumulation rates of sediments along a transect in the Southern Ocean located from 66°S to 57°S at 170°W. This transect also corresponds to the location of a sediment trap mooring line. The sediments at the seven sites studied range from largely terrigenous material to nearly pure (>90%) biogenic silica. CaCO3 is a minor but persistent component at most sites. Mass accumulation rates have been determined on the basis of excess 230Th in the sediments, i.e., 230Th-normalized accumulation rates. The influence of redistribution of sediments on the sea floor has been estimated from 14C analyses. The recycling of material delivered to the sediments has been characterized on the basis of pore water studies that make extensive use of both in situ sampling and shipboard extractions. The influence of the highly variable rates of input of particulate matter that characterize much of the Southern Ocean upon pore water gradients and fluxes across the sediment water interface has been considered.We find only poor correspondence between BSiO2 burial fraction (=burial/particulate flux), a quantifiable measure of preservation efficiency, and BSiO2 particulate rain along the transect. However, preservation does appear to be closely linked to a combination of sedimentation rate and particulate rain.The burial fraction of BSiO2 is small relative to benthic rain (5–19%). Despite the small fraction buried, burial flux normalized to (sedimentation rate)1/2 appears to provide a very consistent means of predicting benthic particulate rain over a large range of rain rates, including data from a number of different studies and environments. At sites with BSiO2 rain 250 mmol m−2 yr−1 the average difference between predicted and observed rain is 25–30%. Such rain rates occur in many marine areas, particularly the Southern Ocean, with the result that this relationship potentially provides a means of estimating BSiO2 benthic rain over prolonged periods in the past on the basis of readily measured sediment parameters.At the southern-most deep ocean station, the particulate flux was characterized by an extremely high Corg/CaCO3 ratio (>10), but this high ratio does not appear to have a substantial influence on CaCO3 burial. CaCO3 is preserved in the sediments at this site despite a particulate flux with a 10-fold excess of Corg above that required for complete dissolution in the sediments. The unexpectedly high preservation of CaCO3 is due largely to the very steep Corg oxidation rate profile at this site. As a result, a large fraction of the organic matter oxidized in the sediments does so in close proximity to the sediment–water interface where most of the metabolic CO2 is neutralized by CO32− from the overlying water, rather than by the dissolution of sedimentary CaCO3.Diagenetic modeling indicates that at several of the stations, the remineralization fluxes of carbonate species across the sediment–water interface may not have been at steady state as a result of the highly pulsed nature of particulate rain in this environment. We estimate that at the time of our sampling it is possible that near-interface fluxes could have been a factor of 1.6–2 times the annual average.At every site on the transect, the burial fluxes of detrital material are substantially greater than the detrital particulate rain measured in the sediment traps, by as much as a factor of 40. Detrital burial is bimodal, being greatest at the southern and northern extremes of the transect. We postulate that the excess of burial over particulate rain in the south reflects the contribution of ice rafted debris at these high latitudes. Increases in the supply at the northern stations must have a different source. We believe that the excess at these stations is material eroded from the sea floor to the west, possibly on the Campbell Plateau, and advected by currents to the northern portion of the transect at depths below the shallow traps.  相似文献   

20.
Our understanding of burial diagenesis within carbonates is often limited by poor constraints on available fluid volumes and geochemistry. However, regional stratigraphic and burial history data are often readily available. Using these data to develop numerical models which couple sedimentological and hydrological basin evolution, we estimate the volumes and geochemistry of fluids that were available to drive dolomitisation and Pb-ore genesis within the Carboniferous, Derbyshire Platform of northern England. Current conceptual models of these processes invoke tectonic release of burial-induced overpressure developed within adjacent Dinantian basins as a drive for reactive fluid flow to the platform. Our simulations show that compaction-driven flow may lead to a supply of fluids that is more complex in its temporal evolution than may be expected. Spatial variations in the rate of fluid expulsion from different sediments lead to a staggered delivery of fluids from different sources. Rapid fluid expulsion within deeper sediments leads to a downwards-decreasing pressure gradient that subsequently draws down fluid from within overlying sediments. Thus, early fluid supply to the platform is sourced from the deep basins while later fluid supply descends from above the platform as well as from the sides. We suggest that such a flow development may have important implications for the relative timing and distribution of a sequence of diagenetic products within the platform. This hypothesis is tested using volume estimates from our simulations. We conclude that although this staggered fluid supply model may be applicable generically, it appears that it is only valid for explaining mineralisation in the Derbyshire Platform. Fluid volumes supplied to the platform are insufficient to explain dolomitisation. Our simulations are supported by a sensitivity analysis that identifies that compaction-driven flow in this system is strongly controlled by the rate of burial and sediment permeabilities within the compacting basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号