共查询到20条相似文献,搜索用时 15 毫秒
1.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands. 相似文献
2.
3.
The impulsive phase of a large solar limb flare of June 20, 1989 总被引:1,自引:0,他引:1
On 1989 June 20, we observed in H the impulsive phase of a 3B/X1.6 limb flare with high temporal resolution. Line profiles have been acquired every 2.3 s with an imaging spectrograph. During the eruption of a filament we observed in H a moving plasma blob from what we believe to be a second loop which correlated spatially and temporally with a microwave source at 1.4 GHz observed by VLA. A magnetodynamic model is used to understand the development of the moving plasma blob. 相似文献
4.
Joan A. Vorpahl 《Solar physics》1972,26(2):397-413
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t
rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations. 相似文献
5.
6.
Raulin Jean Pierre Makhmutov Vladimir S. Kaufmann Pierre Pacini Alessandra Abe Lüthi Thomas Hudson Hugh S. Gary Dale E. 《Solar physics》2004,223(1-2):181-199
We present a report on the strong X5.3 solar flare which occurred on 25 August 2001, producing high-level γ-ray activity, nuclear lines and a dramatic long-duration white-light continuum. The bulk of millimeter radio fluxes reached a peak of ∼100 000 solar flux units at 89.4 GHz, and a few thousands of solar flux units were detected in the submillimeter range during the impulsive phase. In this paper we focus on and discuss (i) the implications inferred from high frequency radio observations during the impulsive phase; (ii) the dynamics of the low corona active region during the impulsive phase. In particular we found that 4–5 × 1036 accelerated (>20 keV) electrons s−1 radiating in a 1000–1100 G region, are needed to explain the millimeter to submillimeter-wave emissions. We present evidence that the magnetic field in the active region was very dynamic, and that strong non-thermal processes were triggered by the appearance of new, compact, low-lying (few thousand kilometers) loop systems, suggesting the acceleration site(s) were also located in the low solar atmosphere. 相似文献
7.
High-resolution observations of the flare on October 21, 1989 were made with the Domeless Solar Telescope of the Hida Observatory. The following new results have been obtained: (a) during the impulsive phase of the flare, the spectral line asymmetry has spatial fine structures of 1–2; (b) for several points in the flare region the line profile alternatively changes between blue asymmetry and red asymmetry within a few seconds. A possible explanation has been suggested. 相似文献
8.
Location and parameters of a microwave millisecond spike event 总被引:1,自引:0,他引:1
A typical microwave millisecond spike event on November 2, 1997 was observed by the radio spectrograph of National Astronomical
Observatories (NAOs) at 2.6–3.8 GHz with high time and frequency resolution. This event was also recorded by Nobeyama Radio
Polarimeters (NoRP) at 1–35 GHz and Radio Heliograph (NoRH) at 17 GHz. The source at 17 GHz is located in one foot-point of
a small bright coronal loop of YOHKOH SXT and SOHO EIT images with strong photospheric magnetic field in SOHO MDI magnetograph.
It is assumed that the electron cyclotron maser instability and gyro-resonance absorption dominate, respectively, the rising
and decay phase of the spike event. For different harmonic number of gyro-frequency or magnetic field strength, a fitting
program with free plasma parameters is used to minimize the difference between the observational and theoretical values of
the exponential growth and decay rates for a given spike. The plasma parameters at third harmonic number are more comparable
to their typical values in solar corona. Hence, it is able to provide a diagnosis for the source parameters (magnetic field,
density, and temperature), the properties of radiations (wave vector and propagation angle), and the properties of non-thermal
electrons (density, pitch angle, and energy). The results are also comparable with the diagnosis of the gyro-synchrotron radiation
model, the frequency drift rates and a dipole magnetic field model, as well as the YOHKOH SXT and SOHO MDI data.
This study is supported by the NFSC project nos. 10333030 and 10273025, and “973” program with no. G2000078403. 相似文献
9.
Solar radio spikes are one of the most intriguing spectral types of radio bursts. Their very short lifetimes, small source size and super-high brightness temperature indicate that they should be involved in some strong energy release, particle acceleration and coherent emission processes closely related to solar flares. In particular, for the microwave spike bursts, their source regions are much close to the related flaring source region which may provide the fundamental information of the flaring process. In this work,we identify more than 600 millisecond microwave spikes which recorded by the Solar Broadband Radio Spectrometer in Huairou(SBRS/Huairou) during an X3.4 solar flare on 2006 December 13 and present a statistical analysis about their parametric evolution characteristic. We find that the spikes have nearly the same probability of positive and negative frequency drifting rates not only in the flare rising phase, but also in the peak and decay phases. So we suppose that the microwave spike bursts should be generated by shockaccelerated energetic electrons, just like the terminational shock(TS) wave produced by the reconnection outflows near the loop top. The spike bursts occurred around the peak phase have the highest central frequency and obviously weak emission intensity, which imply that their source region should have the lowest position with higher plasma density due to the weakened magnetic reconnection and the relaxation of TS during the peak phase. The right-handed polarization of the most spike bursts may be due to the TS lying on the top region of some very asymmetrical flare loops. 相似文献
10.
Using a simplified form of the bremsstrahlung cross-section, we obtain an analytic expression for the intensity of electron-beam-produced hard X-ray emission with depth in solar flares. The results show that footpoint emission is more likely than previously thought, and we discuss these results in the light of recent observations.Presidential Young Investigator.NAS/NRC Research Associate, on leave from CNIE, San Miguel, Argentina. 相似文献
11.
《Chinese Astronomy and Astrophysics》1983,7(2):124-129
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced. 相似文献
12.
We present a model describing changes in ion charges during solar flares based on the observed fact that low temperature magnetic loops emerge before flare bursts and the plasma is rapidly heated during the impulsive phase. Results of numerical calculations of the charge state distribution and mean ionic charges of the elements C, N and O agree perfectly with the observations. 相似文献
13.
E. Tandberg-Hanssen P. Kaufmann E. J. Reichmann D. L. Teuber R. L. Moore L. E. Orwig H. Zirin 《Solar physics》1984,90(1):41-62
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
- The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
- The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
- The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
- The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
- An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
- Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
- Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
14.
A. V. Stepanov Yu. G. Kopylova Yu. T. Tsap K. Shibasaki V. F. Melnikov T. B. Goldvarg 《Astronomy Letters》2004,30(7):480-488
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model. 相似文献
15.
During the time period of November 1968 to March 1970, 259 15.4 GHz impulsive microwave bursts have been identified of which 147 had associated 2–12 Å soft X-ray bursts. Average durations, rise times, and decay times for the microwave bursts are 2.9 ± 2.4 min, 0.9 ± 0.8 min, and 2.2 ± 2.1 min, respectively.Total durations and decay times for the X-ray events display a wide range of values from a few minutes to several hours. Rise times for 50 % of the events fell in the range of 2 to 7 min. A significant fraction (32 %) of the X-ray events may exhibit a flux enhancement prior to the main outburst.For 85 % of the flare cases, the X-ray event begins simultaneously with or before the microwave event. In 91 % of the cases the X-ray event peaks later than the microwave event. The average delay is 3.0 ± 1.9 min with 50 % of cases in the range of 0 to 4 min.The X-ray flux increases are significantly correlated with the microwave flux, increases, having a correlation coefficient of 0.43 (> 99.9 % confident).This work was supported in part by the Office of Naval Research under contract NOOO14-68-A-0196-0009 and the National Aeronautics and Space Administration through grant NGL-16-001-002. 相似文献
16.
We investigated the angular direction and polarization of the solar radio millisecond spike emission in the model in which the spike emission is due to the second harmonic instability modes driven by electron cyclotron maser of loss cone distributed electrons during the propagation of a nonlinear plasma density wave near the magnetic mirror. We found that, when the angle θ between the wave vector and the magnetic field is > 60 °, the emission is in 100% X-mode polarization; when 40 ° < θ<60 °, the emission is in 100% O-mode polarization provided the amplitude of the density wave is below a certain limit; above that limit, the polarization will fall from 100% O-mode to even the X-mode. We also found that only 0.1% of the free energy of energy carrying electrons in the source region is converted into radiation wave energy. 相似文献
17.
In some solar energetic particle events relatively intense proton fluxes are accompanied by disproportionately weak intensity of-burst. A possible reason for such a situation is discussed in this paper. We use the idea that the dynamics of particles in flare loops strongly influences the efficiency of their escape into interplanetary space. It is proposed that in events with weak impulsive phase flare loops are large sized and stretched high into the corona, the magnetic field is weak, and the level of excited turbulence is rather low. All this leads to the weak diffusion of protons into the loss cone, a large lifetime of a particle in the loop ( 103 s) and, hence, to the relatively high efficiency of their escape into interplanetary space. 相似文献
18.
On the reconciliation of simultaneous microwave imaging and hard X-ray observations of a solar flare
We have compared microwave imaging data for a small flare with simultaneous hard X-ray spectral observations. The X-ray data suggest that the power-law index of the energy distribution of the radiating electrons is 5.3 (thick-target) which differs significantly from the estimate ( = 1.4) from a homogeneous optically-thin gyrosynchrotron model which fits the radio observations well. In order to reconcile these results, we explore a number of options. We investigate a double power-law energy spectrum for the energetic electrons in the flare, as assumed by other authors: the power law is steep at low energies and much flatter at the higher energies which produce the bulk of the microwaves. The deduced break energy is about 230 keV if we tentatively ignore the X-ray emission from the radio-emitting electrons: however, the emission of soft photons by the flat tail strongly contributes to the observed hard X-ray range and would flatten the spectrum there. A thin-target model for the X-ray emission is also inconsistent with radio data. An inhomogeneous gyrosynchrotron model with a number of free parameters and containing an electron distribution given by the thick-target X-ray model could be made to fit the radio data. 相似文献
19.
An improved X-ray polarimeter is briefly described and preliminary results of the measurements carried out on the satellite Intercosmos-7 are presented. One flare with considerable polarization (P 16%) was observed on 1972 August 4. Two other flares with rather low polarization (P 4%; P 2%) were observed on 1972 August 7 and 11. 相似文献
20.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed. 相似文献