首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
正Research in Astronomy and Astrophysics publishes original research papers and reviews on all branches of astronomy and astrophysics.Reviews are by invitation only.Important new results that require rapid publication can be submitted as a Letter(Letters must be restricted in length to 6 printed pages).Authors who submit a paper are expected to be able to certify that the paper is original work,  相似文献   

3.
Laura Schaefer 《Icarus》2005,173(2):454-468
We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10−6 to 10+1 bars) ranges, which overlap the nominal conditions at Pele (T=1760 K, P=0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. The elemental abundances for O, S, Na, K, and Cl are based upon observations. CI chondritic elemental abundances relative to sulfur are used for the other alkalis and halogens (as yet unobserved on Io). We predict the major alkali species in Pele-like volcanic gases and the percentage distribution of each alkali are LiCl (73%), LiF (27%); NaCl (81%), Na (16%), NaF (3%); KCl (91%), K (5%), KF (4%); RbCl (93%), Rb (4%), RbF (3%); CsCl (92%), CsF (6%), Cs (2%). Likewise the major halogen species and the percentage distribution of each halogen are NaF (88%), KF (10%), LiF (2%); NaCl (89%), KCl (11%); NaBr (89%), KBr (10%), Br (1%); NaI (61%), I (30%), KI (9%). We predict the major halogen condensates and their condensation temperatures at P=0.01 bar are NaF (1115 K), LiF (970 K); NaCl (1050 K), KCl (950 K); KBr (750 K), RbBr (730 K), CsBr (645 K); and solid I2 (200 K). We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. Their estimated photochemical lifetimes range from a few minutes for alkali iodides to a few hours for alkali fluorides. Condensation is apparently the only loss process for elemental iodine. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observations of brown dwarfs we also recommend a search of Io's extended atmosphere and the Io plasma torus for neutral and ionized Li, Cs, Rb, and F.  相似文献   

4.
Modern-day synoptic-scale eastern Mediterranean climatology provides a useful context to synthesize the diverse late Pleistocene (60–12 ka) paleohydrologic and paleoenvironmental indicators of past climatic conditions in the Levant and the deserts to its south and east. We first critically evaluate, extract, and summarize paleoenvironmental and paleohydrologic records. Then, we propose a framework of eastern Mediterranean atmospheric circulation features interacting with the morphology and location of the southeast Mediterranean coast. Together they strongly control the spatial distribution of rainfall and wind pattern. This cyclone–physiography interaction enforces the observed rainfall patterns by hampering rainfall generation south and southeast of the latitude of the north Sinai coast, currently at 31°15′.The proposed framework explains the much-increased rains in Lebanon and northern Israel and Jordan as deduced from pollen, rise and maintenance of Lake Lisan, and speleothem formation in areas currently arid and semiarid. The proposed framework also accounts for the southward and eastward transition into semiarid, arid, and hyperarid deserts as expressed in thick loess accumulation at the deserts' margins, dune migration from west to east in the Sinai and the western Negev, and the formation of hyperarid (< 80 mm yr− 1) gypsic–salic soils in the southern Negev and Sinai. Our climatic synthesis explains the hyperarid condition in the southern Negev, located only 200–250 km south of the much-increased rains in the north, probably reflecting a steeper rainfall gradient than the present-day gradient from the wetter Levant into its bordering southern and eastern deserts.At present, the rainiest winter seasons in Lebanon and northern and central Israel are associated with more frequent (+ 20%), deeper Cyprus Lows traversing the eastern Mediterranean at approximately the latitude of southern Turkey. Even these wettest years in northern Israel do not yield above average annual rainfall amounts in the hyperarid southern Negev. This region is mainly influenced by the Active Red Sea Troughs that produce only localized rains. The eastern Mediterranean Cyprus Lows also produce more dust storms and transport higher amounts of suspended dust to the loess area than any other atmospheric pattern. Concurrent rainfall and dust are essential to the late Pleistocene formation of the elongated thick loess zone along the desert northern margin. Even with existing dust storms, the lack of rain and very sparse vegetation account for the absence of late Pleistocene loess sequences from the southern Negev and the formation of hyperarid soils.When the north Sinai coast shifted 30–70 km northwest due to last glacial global sea level lowering, the newly exposed coastal areas supplied the sand and dust to these active eastern Mediterranean cyclones. This enforced the latitude of the northern boundary of the loess zone to be directly due east of the LGM shoreline. This shift of coast to the northwest inhibited rainfall in the southern Levant deserts and maintained their hyperaridity. Concurrently, frequent deep eastern Mediterranean Cyprus Lows were funneled along the northern Mediterranean increasing (probably doubling) the rains in central and northern Israel, Lebanon, southwestern Syria and northern Jordan. These storms and rains formed lakes, forests, and speleothems only a short distance north of the deserts in the southern Levant.  相似文献   

5.
Interferometry in the visible provides milliarcsecond spatial resolution and thus has been used for studying the circumstellar environment of active hot stars. In this paper I will illustrate how the visibility modulus and phase can be used to better constrain the physics of Be disks through results from the VLA, the MkII and the GI2T interferometers. I will insist on the importance and the potential of coupling high angular resolution with high spectral resolution to the study of Be shells. Finally I will present a possible study of the circumstellar disk of Be stars using the VLTI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

7.
Using the method of apparent motion parameters, we have studied the relative motion of the components in 561 pairs of wide (ρ > 2″) and relatively nearby (Hipparcos parallaxes > 0.01″) visual double stars based on data from the WDS catalog. The minimum masses of the double stars have been calculated at given parallaxes. We have identified 358 optical pairs. For 11 stellar pairs, we have found the minimum mass to exceed the estimate corresponding to their spectral types and luminosities. This excess is 5–7 M for two stars, ADS 7446 and 9701.  相似文献   

8.
According to recent conjectures on the existence of large extra dimensions in our universe, black holes could be produced during the interaction of Ultra High Energy Cosmic Rays with the atmosphere. However, and so far, the proposed signatures are based on statistical effects, not allowing identification on an event by event basis, and may lead to large uncertainties. In this note, events with a double bang topology, where the production and instantaneous decay of a microscopic black hole (first bang) is followed, at a measurable distance, by the decay of an energetic tau lepton (second bang) are proposed as an almost background free signature. The characteristics of these events and the capability of large cosmic ray experiments to detect them are discussed.  相似文献   

9.
Laura Schaefer 《Icarus》2004,169(1):216-241
We modified the MAGMA chemical equilibrium code developed by Fegley and Cameron (1987, Earth Planet. Sci. Lett. 82, 207-222) and used it to model vaporization of high temperature silicate lavas on Io. The MAGMA code computes chemical equilibria in a melt, between melt and its equilibrium vapor, and in the gas phase. The good agreement of MAGMA code results with experimental data and with other computer codes is demonstrated. The temperature-dependent pressure and composition of vapor in equilibrium with lava is calculated from 1700 to 2400 K for 109 different silicate lavas in the ONaKFeSiMgCaAlTi system. Results for five lavas (tholeiitic basalt, alkali basalt, Barberton komatiite, dunite, and a molten type B1 Ca, Al-rich inclusion) are discussed in detail. The effects of continuous fractional vaporization on chemistry of these lavas and their equilibrium vapor are presented. The predicted abundances (relative to Na) of K, Fe, Si, Al, Ca, and Ti in the vapor equilibrated with lavas at 1900 K are lower than published upper limits for Io's atmosphere (which do not include Mg). We predict evaporative loss of alkalis, Fe, and Si during volcanic eruptions. Sodium is more volatile than K, and the Na/K ratio in the gas is decreased by fractional vaporization. This process can match Io's atmospheric Na/K ratio of 10±3 reported by Brown (2001, Icarus 151, 190-195). Silicon monoxide is an abundant species in the vapor above lavas. Spectroscopic searches are recommended for SiO at IR and mm wavelengths. Reactions of metallic vapors with S- and Cl-bearing volcanic gases may form other unusual gases including MgCl2, MgS, MgCl, FeCl2, FeS, FeCl, and SiS.  相似文献   

10.
11.
As shown by statistical results, in the 23rd solar activity cycle the variation of the latitudes of rotating sunspots with time exhibits a butterfly pattern. We have studied the variations with phase for the mean square errors among the 4 fitting curves of the 2 wings of the butterfly diagram of sunspots and the 2 wings of the butterfly diagram of rotating sunspots in the 23rd solar activity cycle. The results show that a systematic time delay exists not only between the northern and southern hemispheres of the butterfly diagram of sunspots, but also between the northern and southern hemispheres of the butterfly diagram of rotating sunspots, even between the butterfly diagrams of the sunspots and rotating sunspots in the same hemisphere. This means that the 23rd-cycle sunspot activities in the northern and southern hemispheres happened not simultaneously, that a systematic time delay or advance (phase difference) exists between the northern and southern hemispheres, that the southern hemisphere lags behind the northern hemisphere, that a phase difference exists between the butterfly diagram of rotating sunspots and the butterfly diagram of sunspots in the 23rd cycle, and that the butterfly diagram of rotating sunspots lags behind that of sunspots. The observed delay is a little less than the theoretical value predicted by the dynamo model.  相似文献   

12.
In the present paper, we report on micropaleontological (dinocysts) and isotopic (18O and 13C in foraminifers) analyses performed in Holocene sediments from fifteen cores raised from the central and northwest North Atlantic. Sea-surface temperature (SST), sea-surface salinity (SSS), thus potential density, and sea-ice cover are reconstructed based on dinocyst assemblages. After proper calibration, oxygen isotope data on the mesopelagic foraminifer Neogloboquadrina pachyderma left coiled (Npl) are converted into potential density values deeper in the water column, thus allowing documentation of vertical density gradients and identification of intervals favourable for winter convection to occur with formation of intermediate Labrador Sea Water (LSW). The most important findings from this study include: (1) the existence of an early-mid Holocene thermal optimum with positive anomalies up to 6 °C above present along the main SW–NE axis of the North Atlantic Current, but no significant SST maximum at most sites along eastern Canadian margins; (2) the evidence for larger than present amplitude of annual SSTs during the early Holocene, thus for a stronger seasonality; (3) minimum sea-ice cover from 11 500 to 6000 cal years BP, and a slight increase of sea-ice variability, and average seasonal duration of 0.5 to 1 month per year afterwards; (4) variable SSS during the entire Holocene, suggesting changes in the routing and rates of freshwater–meltwater discharges from the Arctic and eastern Canada; (5) the setting of conditions compatible with LSW production after 8 ka only, and likely a more steady production during the late Holocene; (6) an overall trend for a potential density increase of the Labrador Sea, throughout the Holocene, matching a decreasing trend eastward, thus suggesting a progressive enhancement of the western branch of the Atlantic Meridional Overturning with respect to its northeastern route; and (7) indication of maximum production and fast dispersal of LSW in the entire North Atlantic during recent times only, as suggested by linearly-converging δ18O-values of Npl from all sites, towards its modern relatively homogeneous composition ( 2.5/2.6‰). The overall picture of the Holocene North Atlantic arising from this study is that of a basin marked by a strong regionalism with large discrepancies in hydrographical trends and high frequency oscillations, at least partly controlled by freshwater–meltwater routes and rates of export from the Arctic.  相似文献   

13.
The evolutionary stage of the low-temperature contact binary (LTCB) V2388 Oph has been investigated. V2388 Oph was previously classified as an A-type W UMa star, and is the brighter member of the visual binary Fin 381. When compared to other well-known LTCBs it is evident that the primary component has evolved to the TAMS, and the companion also seems to be more evolved than a ZAMS star. Mochnacki proposed a new subgroup of W UMa stars, namely of OO Aql type, distinct from A and W types. V2388 Oph is suggested to be a member of this new group.  相似文献   

14.
William B. McKinnon 《Icarus》2006,183(2):435-450
It has been argued that the dominant non-Newtonian creep mechanisms of water ice make the ice shell above Callisto's ocean, and by inference all radiogenically heated ice I shells in the outer Solar System, stable against solid-state convective overturn. Conductive heat transport and internal melting (oceans) are therefore predicted to be, or have been, widespread among midsize and larger icy satellites and Kuiper Belt objects. Alternatively, at low stresses (where non-Newtonian viscosities can be arbitrarily large), convective instabilities may arise in the diffusional creep regime for arbitrarily small temperature perturbations. For Callisto, ice viscosities are low enough that convection is expected over most of geologic time above the internal liquid layer for plausible ice grain sizes (?a few mm); the alternative for early Callisto, a conducting shell over a very deep ocean (>450 km), is not compatible with Callisto's present partially differentiated state. Moreover, if convection is occurring today, the stagnant lid would be quite thick (∼100 km) and compatible with the lack of active geology. Nevertheless, Callisto's steady-state heat flow may have fallen below the convective minimum for its ice I shell late in Solar System history. In this case convection ends, the ice shell melts back at its base, and the internal ocean widens considerably. The presence of such an ocean, of order 200 km thick, is compatible with Callisto's moment-of-inertia, but its formation would have caused an ∼0.25% radial expansion. The tectonic effects of such a late, slow expansion are not observed, so convection likely persists in Callisto, possibly subcritically. Ganymede, due to its greater size, rock fraction and full differentiation, has a substantially higher heat flow than Callisto and has not reached this tectonic end state. Titan, if differentiated, and Triton should be more similar to Ganymede in this regard. Pluto, like Callisto, may be near the tipping point for convective shutdown, but uncertainties in its size and rock fraction prevent a more definitive assessment.  相似文献   

15.
16.
There exist isolated elliptical galaxies, whose dynamics can be modeled without resorting to dark matter or MOND, for example, NGC 7507. Such objects lack understanding within the current framework of galaxy formation. The isolated elliptical NGC 5812 is another object to investigate a possible role of isolation. We use globular clusters (GCs) and the galaxy light itself as dynamical tracers to constrain its mass profile. We employ Gemini/GMOS mask spectroscopy, apply the GMOS reduction procedures provided within IRAF, measure GC velocities by cross correlation methods and extract the line-of-sight kinematics of galaxy spectra using the tool pPXF. We identify 28 GCs with an outermost galactocentric distance of 20 kpc, for which velocities could be obtained. Furthermore, 16 spectra of the integrated galaxy light out to 6 kpc have been used to model the central kinematics. These spectra provide evidence for a disturbed velocity field, which is plausible given the disturbed morphology of the galaxy. We construct spherical Jeans models for the galaxy light and apply tracer mass estimators for the globular clusters. With the assumptions inherent to the mass estimators, MOND is compatible with the mass out to 20 kpc. However, a dark matter free galaxy is not excluded, given the uncertainties related to a possible nonsphericity and a possible nonequilibrium state. We find one globular cluster with an estimated mass of 1 . 6 × 1 0 7 M $$ 1.6\times 1{0}^7{M}_{\odot } $$ , the first Ultra Compact Dwarf in an isolated elliptical. We put NGC 5812 into the general context of dark matter or alternative ideas in elliptical galaxies. The case for a MONDian phenomenology also among early-type galaxies has become so strong that deviating cases appear astrophysically more interesting than agreements. The baryonic Tully Fisher relation (BTFR) as predicted by MOND is observed in some samples of early-type galaxies, in others not. However, in cases of galaxies that deviate from the MONDian prediction, data quality and data completeness are often problematic.  相似文献   

17.
Ly α and Ly β line profiles in a solar prominence were observed with high spatial and spectral resolution with SOHO/SUMER. Within a 60-arcsec scan, we measure a very large variety of profiles: not only reversed and nonreversed profiles but also red-peaked and blue-peaked ones in both lines. Such a spatial variability is probably related to both the fine structure in prominences and the different orientations of mass motions. The usage of integrated-intensity cuts along the SUMER slit allowed us to categorize the prominence in three regions. We computed average profiles and integrated intensities in these lines in the range 2.36 – 42.3 W m−2 sr−1 for Ly α and 0.027 – 0.237 W m−2 sr−1 for Ly β. As shown by theoretical modeling, the Ly α/Ly β ratio is very sensitive to geometrical and thermodynamic properties of fine structure in prominences. For some pixels, and in both lines, we found agreement between observed intensities and those predicted by one-dimensional models. But a close examination of the profiles indicated a rather systematic disagreement concerning their detailed shapes. The disagreement between observations and thread models (with ambipolar diffusion) leads us to speculate about the importance of the temperature gradient between the cool and coronal regions. This gradient could depend on the orientation of field lines as proposed by Heinzel, Anzer, and Gunár (Astron. Astrophys. 442, 331, 2005).  相似文献   

18.
Investigating space plasma turbulence from single-point measurements is known to be characterized by unavoidable ambiguities in disentangling temporal and spatial variations. Solving this problem has been one of the major goals of the Cluster mission. For that purpose multipoint measurements techniques, such as the k-filtering, have been developed. Such techniques combine several time series recorded simultaneously at different points in space to estimate the corresponding energy density in the wavenumber space. Here we apply the technique to both simulated and Cluster magnetometer data in the solar wind (SW) and investigate the errors and limitations that arise due to the separation of the spacecraft and the quality of the tetrahedral configuration. Specifically, we provide an estimation of the minimum and maximum scales that can be accurately measured given a specific distance between the satellites and show the importance of the geometry of the tetrahedron and the relationship of that geometry to spatial aliasing. We also present recent results on characterizing small scale SW turbulence and provide scientific arguments supporting the need of new magnetometers having better sensitivity than the existing ones. Throughout the paper we emphasize technical challenges and their solutions that can be considered for a better preparation of the Cross-Scale mission.  相似文献   

19.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. This report introduces a system of cartographic coordinates for asteroids and comets. A topographic reference surface for Mars is recommended. Tables for the rotational elements of the planets and satellites and size and shape of the planets and satellites are not included, since there were no changes to the values. They are available in the previous report (Celest. Mech. Dyn. Astron., 82, 83–110, 2002), a version of which is also available on a web site.  相似文献   

20.
A subset of the unidentified EGRET γ-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 ± 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (∼15) and small (∼1) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号