首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
慢滑移及相关脉动和慢地震研究的历史和现状   总被引:1,自引:2,他引:1  
观测表明,慢滑移事件通常发生在活动断裂带内,为发震层之下的短暂滑移,能够造成地表的瞬态运动。与慢滑移密切相关的慢地震能够发射出频率在一定范围内的脉动信号,但不造成灾害性事件。慢滑移和慢地震很可能是断裂带上形变能释放的基本方式,其观测有可能为人们更深入地了解断裂带的动力学过程提供基础和依据。本文重点介绍近10年来关于慢地震和慢滑移事件的研究历史和现状。目前对慢滑移引发的地表形变和慢地震发射的脉动信号特征有了深入细致的研究,开展了对慢滑移的数值模拟和慢地震定位的研究;但对慢地震和慢滑移发生的位置、两者的关系以及物理机制等方面还存在很多争论和问题。  相似文献   

2.
We associate waveform-relocated background seismicity and aftershocks with the 3-D shapes of late Quaternary fault zones in southern California. Major earthquakes that can slip more than several meters, aftershocks, and near-fault background seismicity mostly rupture different surfaces within these fault zones. Major earthquakes rupture along the mapped traces of the late Quaternary faults, called the principal slip zones (PSZs). Aftershocks occur either on or in the immediate vicinity of the PSZs, typically within zones that are ??2-km wide. In contrast, the near-fault background seismicity is mostly accommodated on a secondary heterogeneous network of small slip surfaces, and forms spatially decaying distributions extending out to distances of ??10?km from the PSZs. We call the regions where the enhanced rate of background seismicity occurs, the seismic damage zones. One possible explanation for the presence of the seismic damage zones and associated seismicity is that the damage develops as faults accommodate bends and geometrical irregularities in the PSZs. The seismic damage zones mature and reach their finite width early in the history of a fault, during the first few kilometers of cumulative offset. Alternatively, the similarity in width of seismic damage zones suggests that most fault zones are of almost equal strength, although the amount of cumulative offset varies widely. It may also depend on the strength of the fault zone, the time since the last major earthquake as well as other parameters. In addition, the seismic productivity appears to be influenced by the crustal structure and heat flow, with more extensive fault networks in regions of thin crust and high heat flow.  相似文献   

3.
Shear zones in outcrops and core drillings on active faults commonly reveal two scales of localization, with centimeter to tens of meters thick deformation zones embedding much narrower zones of mm-scale to cm-scale. The narrow zones are often attributed to some form of fast instability such as earthquakes or slow slip events. Surprisingly, the double localisation phenomenon seem to be independent of the mode of failure, as it is observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In both, a very thin layer of chemically altered, ultra fine grained ultracataclasite or ultramylonite is noted. We present an extension to the classical solid mechanical theory where both length scales emerge as part of the same evolutionary process of shearing the host rock. We highlight the important role of any type of solid-fluid phase transitions that govern the second degree localisation process in the core of the shear zone. In both brittle and ductile shear zones, chemistry stops the localisation process caused by a multiphysics feedback loop leading to an unstable slip. The microstructural evolutionary processes govern the time-scale of the transition between slow background shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic fragmentation processes are limiting the rates of forming the ultracataclasites in the brittle domain, while the slow dynamic recrystallisation prolongs the transition to ultramylonites into a slow slip instability in the ductile realm.  相似文献   

4.
Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb’s frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.  相似文献   

5.
红河和曲江断裂带断层泥的特征及其地震地质意义   总被引:3,自引:0,他引:3       下载免费PDF全文
活断层产物的研究近年来受到国内外地震地质学者的关注。笔者对地质、地震证据充分的活断层——红河断裂带和曲江断裂带的断层泥进行多种手段的分析研究。它们的显微构造、粒度分布,组构特征以及石英碎砾的SEM显微形貌等显示了活断层中的长期蠕滑研磨作用、地震过程的快速剪切运动以及活断层特定条件下的退变质作用和其他化学作用等成因特征。综合分析指出,红河断裂带南段可能是蠕滑运动为主的活断层,其北段和曲江断裂带则为粘滑运动为主的活断层  相似文献   

6.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough.  相似文献   

7.
Slow earthquakes and great earthquakes along the Nankai trough   总被引:2,自引:0,他引:2  
We have reexamined reports indicating that slow deformation occurred before the great Japan earthquakes of 1944 (Tonankai) and 1946 (Nankaido) and find that the observations are well founded. Although no quantitative models have previously been proposed to explain all of the relevant data we show that they are satisfied by a simple model for both earthquakes. The model, based on known properties of subduction zones, has slow slip on the subduction interface in an area deeper than the seismic rupture. If this model is correct and a similar physical situation holds for an anticipated Tokai earthquake, existing instruments will be able to reveal the pre-slip in real time. While differences among the deformation time series at different sites will provide strong constraints on the slow rupture propagation, these differences could result in delaying the recognition of a coherent event.  相似文献   

8.
中国大陆地震的应力调整场动态模型   总被引:6,自引:1,他引:5       下载免费PDF全文
本文根据强震区域分布特征与大地貌的相关性,127个地震断层面解,18个大地震破裂带资料和地震断裂带的平均滑动速度等方面的资料,提出了中国大陆地震应力调整场动态模型。最后,基于此模型讨论了中国地震活动性问题  相似文献   

9.
2015年河北滦县震群发震机理分析   总被引:10,自引:1,他引:9       下载免费PDF全文
震群发震机理研究是近年来地震学研究的热点之一,其中基于观测现象对不同发震机理模型的分析和讨论是研究焦点.本文以2015年河北滦县震群为研究对象,首先通过模板匹配方法检测震群活动期间目录遗漏地震事件,得到更为完整的地震目录.再通过波形互相关震相检测技术标定地震事件在记录台站的震相到时,依据标定的震相到时,利用双差定位方法对震群进行精定位,基于地震精定位结果分析震群的震中扩展特征.最后通过波形互相关系数和破裂面重合程度检测震群中是否存在重复地震活动.通过计算共检测到目录遗漏地震事件103个.地震精定位结果显示发震构造为北东向断层,震中扩展表现出迁移速率先快后慢的两阶段线性扩展特征.震群活动期间共检测到两组重复地震活动,其中第一组发生在震中扩展的第一阶段,第二组发生在震中扩展的第二阶段.在三种常见的震群发震机理模型——级联触发模型、断层慢滑动模型和流体侵入模型中,断层慢滑动模型能够解释我们观测到的重复地震活动和震中线性扩展现象,因此认为此次滦县震群活动可能伴随断层的慢滑动,断层慢滑动可能对滦县震群的触发和持续活动起到一定作用.  相似文献   

10.
野外地质调查结果显示,断层带常富集碳质.断层带中碳的分布结构是影响断层带电导率特征的一种重要参数.本文在室温、室内湿度和2MPa正应力条件下,对不同石墨含量(3,5,6和7wt%)的石英-石墨混合断层泥模拟样品开展了滑动速率介于500μm·s-1~1m·s-1的摩擦实验及相应的电导率测量,以期研究断层运动对碳分布结构的影响以及断层带电性特征对碳含量及分布的响应情况.结果显示,摩擦滑动能够显著地改变样品的电性特征(电导率大小及其各向异性).在平行滑动面方向(径向),样品电导率随着滑动位移的增加快速增加,在滑动约数十厘米之后,其电导率基本达到稳定状态;在垂直滑动面方向(轴向),样品电导率基本不随摩擦滑动速率和滑动距离而变化.SEM显微结构观测显示,摩擦滑动所引起的电导率各向异性直接反映了石墨分布结构的变化.该研究结果深化了对地震断裂带浅部电性特征的认识,为野外断层带大地电磁测深资料的解释提供了约束,同时对于了解含碳断层的力学性质和弱矿物相在剪切变形中的分布特征及其演化过程等方面也具有重要意义.  相似文献   

11.
Brecciation processes in fault zones: Inferences from earthquake rupturing   总被引:7,自引:0,他引:7  
Surface-rupture patterns and aftershock distributions accompanying moderate to large shallow earthquakes reveal a residual brittle infrastructure for established crustal fault zones, the complexity of which is likely to be largely scale-invariant. In relation to such an infrastructure, continued displacement along a particular master fault may involve three dominant mechanical processes of rock brecciation: (a)attrition brecciation, from progressive frictional wear along principal slip surfaces during both seismic and aseismic sliding, (b)distributed crush brecciation, involving microfracturing over broad regions when slip on the principal slip surfaces is impeded by antidilational jogs or other obstructions, and (c)implosion brecciation, associated with the sudden creation of void space and fluid-pressure differentials at dilational fault jogs during earthquake rupture propagation. These last, high-dilation breccias are particularly favorable sites for hydrothermal mineral deposition, forming transitory low-pressure channels for the rapid passage of hydrothermal fluids. Long-lived fault zones often contain an intermingling of breccias derived from all three processes.  相似文献   

12.
On November 6, 1988, two earthquakes with magnitude>7 occurred on the Lancang-Gengma fault zone in south-west China. The extensive destruction and loss of lives resulted mainly from widespread collapse of unreinforced masonry and mud brick structures; the maximum preliminary intensity of the Lancang earthquakes was IX on the Chinese scale, which is similar to the Modified Mercall scale, and the highest preliminary intensity of the Gengma earthquake was probably X. The surface manifestation of tectonic activity of the Lancang earthquake was the occurrence of the earthquake-related extensional ground cracks and small fault scarps in the epicentral region. The cracks with small fault scarps occurred mainly in four relatively continuous north-northwest-trending linear zones that ranged from a few hundred meters to 6 km in length. The area within which the cracks and small scarps occurred is 35 km long by 3 km wide. The maximum net throw and the dextral horizontal offset were 1.5m and 1.4m, respectively. Clear evidence of new surface faulting caused by the Gengma earthquake includes a series of relatively continuous north-northwest-trending linear ground crack zones and a 5 km long section of fault scarps. The total length of the surface rupture zones of the Gengma earthquakes is about 24 km, with 3.5m maximum net throw and 3m maximum right-lateral slip. Both earthquakes were associated with surface faulting showing a combination of normal and right lateral motion. The distribution of seismic intensities and surface rupture characteristics of these two earthquakes are discussed in this paper. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 344–353, 1991. The research project was performed out under the direction of Professors. Xingyuan Ma and Yuntai Chen, and the field investigation was performed with help of Kui Jiang and Junchang Zhang of the Seismological Bureau of Yunnan Province. Here the authors express great appreciation.  相似文献   

13.
王辉  谷一山 《地震学报》1991,13(3):344-353
1988年11月6日,在云南省西南部的澜沧-耿马断裂带上发生了两次大于7级的地震.地震造成的严重破坏和人员伤亡主要是由于极震区内抗震性能极差的毛石房、砖柱土坯房的大量倒塌所致.澜沧地震的震中基本烈度可达Ⅸ度,耿马地震极震区烈度达Ⅹ度.澜沧地震构造活动的地表证据主要是出现在极震区内的张性地裂缝带和小断层陡坎.地裂缝带和小断坎主要出现在四条相对连续的北北西走向的狭窄地带内,其长度从几百 m 到6km 不等.澜沧地震地表破裂带长约35km,宽约3km,最大垂直位移量和最大右旋水平位移量分别为1.5m 和1.4m.耿马地震地表断裂活动的明显证据包括一系列北北西走向的地裂缝带和一段长约5km的地震断层陡坎.耿马地震地表破裂带长约24km,其最大垂直位移3.5m,最大右旋水平位移为3m.两次地震形成的地表破裂带均具有右旋-正断层性质.本文讨论了这两次地震的 度分布及地表破裂特征.   相似文献   

14.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   

15.
The Xiaojiang fault zone constitutes part of the major Xianshuihe-Xiaojiang left lateral structure that bounds the rhombic-shaped block of Yunnan-Sichuan to the east. Long strike slip fault zones that have repeatedly accommodated intense seismic activity, constitute a basic feature of southeast China. Known historical earthquakes to have struck the study area are the 1713 Xundian of M6.8, 1725 Wanshou mountain of M6.8, the 1733 Dongchuan of M7.8, and the strongest one, the 1833 Songming of M8.0. Although instrumental record did not report events of this magnitude class, the 18th century clustering as well as the 19th century large event prompted the investigation of stress transfer along this fault zone. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong (M ≥ 6.8) earthquakes and the slow tectonic stress buildup along the major fault segments. Geological and geodetic data are used to infer the geometry of these faults and long term slip rates on them, as well as for the fault segments that slipped. Evidence is presented that the strong historical events as well as the ones of smaller magnitude that occurred during the instrumental era, are located in areas where the static stress was enhanced. By extending the calculations up to present, possible sites for future strong events are identified.  相似文献   

16.
Dense strong motion observation networks provided us with valuable data for studying strong motion generation from large earthquakes. From kinematic waveform inversion of seismic data, the slip distribution on the fault surface of large earthquakes is known to be spatially heterogeneous. Because heterogeneities in the slip and stress drop distributions control the generation of near-source ground motion, it is important to characterize these heterogeneities for past earthquakes in constructing a source model for reliable prediction of strong ground motion. The stress changes during large earthquakes on the faults recently occurring in Japan are estimated from the detailed slip models obtained by the kinematic waveform inversion. The stress drops on and off asperities are summarized on the basis of the stress change distributions obtained here. In this paper, we define the asperity to be a rectangular area whose slip is 1.5 or more times larger than the average slip over the fault according to the previous study for inland crustal earthquakes. The average static stress drops on the asperities of the earthquakes studied here are in the range 6?C23?MPa, whereas those off the asperities are below 3?MPa. We compiled the stress drop on the asperities together with a data set from previous studies of other inland earthquakes in Japan and elsewhere. The static stress drop on the asperity depends on its depth, and we obtained an empirical relationship between the static stress drop and the asperity??s depth. Moreover, surface-breaking asperities seemed to have smaller stress drops than buried asperities. Simple ground motion simulations using the characterized asperity source models reveal that deep asperities generate larger ground motion than shallow asperities, because of the different stress drops of the asperities. These characteristics can be used for advanced source modeling in strong ground motion prediction for inland crustal earthquakes.  相似文献   

17.
刘鸣  付碧宏  董彦芳 《地球物理学报》2015,58(11):4174-4186
2008年汶川大地震发生以来,位于青藏高原东南缘实皆断裂带和红河断裂系之间滇缅地块发生了一系列MS5.5以上中强地震,该地区未来是否可能发生MS7.0以上大地震的危险性,十分令人关注.本研究以滇缅地块内部最长的NE向走滑断裂带——南汀河断裂带为例,结合遥感图像、数字高程模型(DEM)和1∶20万地质图,对断裂带附近的水系系统拐弯地貌特征和大型地质体单元位错信息进行提取分析,并根据这些断裂带左旋走滑起始年代(5 Ma),推算其长期走滑速率.研究结果表明研究区NE向断裂带自上新世以来,具有2mm·a-1的长期走滑速率;此外,根据发生在断裂带上及其周边地区的历史地震、大震复发周期和区内现代构造应力场的分布分析发现,沿这些NE向大型左旋走滑断裂带未来具有MS7.0以上大地震发生的危险性.  相似文献   

18.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

19.
The regime of strain release along transform faults of the Mid-Oceanic Ridge system is studied. It is shown that earthquakes along certain fracture zones exhibit systematic discrepancies between values of their magnitudes measured at short and long periods, implying a regime of slower strain release, also observed in a pattern of complex body waveshapes. These “slow” fracture zones do not correlate with simple geographic or kinematic properties, but usually occur in the neighborhood of hotspot volcanism, frequently also characterized by gravity and bathymetry anomalies. We propose that regimes of slow strain release may be due to a partial lubrication of the fault along these fracture zones, which may itself be due to asthenospheric flow from the nearby hotspots, along the pattern of pipelines described by Vogt and Johnson and by Morgan.  相似文献   

20.
山西地堑系现代北西-北北西向拉张应力场   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号