首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The western and southwestern parts of the Argentine Precordillera display complex geometries which are not consistent with those of a typical high-level fold-and-thrust belt. They are the result of a polyphase structural evolution which spans the Early Paleozoic to Late Tertiary period. After an Early Paleozoic folding and shearing event under a greenschist facies metamorphism, uplift, erosion, and deposition of Late Carboniferous to Early Permian clastics were accompanied by extensional faulting. This was followed by a Permian folding and faulting event which led to a partial inversion of the Late Carboniferous-Early Permian graben fill. Permian to Triassic crustal extension was combined with block faulting and the deposition of a thick volcanic sequence. The subsequent Late Tertiary crustal shortening partly reactivated older fault lines. Excluding folds, a few thrusts, and reverse faults, the crustal shortening within the older blocks was accommodated by a dominant sinistral strike-slip faulting under a W-E compressive regime. Above a major décollement, the entire sequence of faulted and folded blocks was carried from west to east towards its present position. The regional situation indicates that this southern part of the orogen was transferred further to the east with respect to the central thin-skinned parts. The movements are interpreted to be related to an important thrust fault which obliquely cuts through the fold-and-thrust belt.  相似文献   

2.
Rocks and structures in the southwest Precordillera terrane, located in western Argentina, constrain the Paleozoic distribution of continents and the development of the western margin of Gondwana. Detailed mapping of an area in the southwest Precordillera allowed identification of several pre-Carboniferous rock units formed in distinct tectonic environments and were later tectonically juxtaposed. The pre-Carboniferous rock units comprise carbonate metasiltstone, metasandstone, massive diabase, and quartzo-feldspathic gneiss intruded by ultramafic rocks and layered gabbro. Preliminary structural analysis indicates that the present distribution of units is due to two contractional deformation episodes, an east-directed Devonian ductile event and a west-directed Tertiary brittle event. The metasedimentary rocks, which form the structural base of the area and are part of the western Precordilleran passive margin sequence, were juxtaposed along minor ductile shear zones early in the ductile event. Their contact was then folded during continued ductile deformation; at this time the ultramafic/layered gabbro complex and the massive diabase were emplaced over the metasedimentary units along narrow ductile shear zones. Brittle deformation, associated with the Andean orogeny, involved open folding, thrust faulting, and reactivation of some ductile features.  相似文献   

3.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

4.
The Tianshan range could have been built by both late Early Paleozoic accretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture is marked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphic relics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanic arc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along with unconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation. The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductile shearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductile deformation, and the later deformation, a dextral strike-slip tectonic process, occurred during the Late Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably on pre-Carboniferous metamorphic and ductilely sheared rocks, implying t  相似文献   

5.
6.
燕山地区位于华北板块的东北部 ,自晚古生代华北板块与蒙古板块的拼合后 ,燕山地区进入板内构造演化阶段。以往燕山造山带的研究主要集中于中侏罗世开始的燕山运动 ,而对已经发现的印支期构造的详细研究比较缺乏。通过对辽西凌源太阳沟地区进行详细的构造解剖分析和大比例尺地质填图 ,揭示出在晚三叠世到早侏罗世期间 ,该区经历了三次重要的构造变形。即晚三叠世到早侏罗世早期 ,发育由东往西逆冲的后展式逆冲推覆 ,早侏罗世晚期由西往东逆冲的前展式逆冲推覆和早侏罗世晚期崩塌滑覆构造。三期构造变形显示了燕山造山带早期构造的非极性演化特征 ,也显示了燕山地区的快速抬升和剥露过程。短时期内三期逆冲构造推覆方向的反转 ,显示了板内变形的特征 ,结合已经确定的变形时代及构造指向 ,作者认为它们很可能是对晚三叠世秦岭—大别碰撞带和侏罗—白垩纪蒙古—鄂霍茨克碰撞带的远程构造响应的结果  相似文献   

7.
The thermal history of the Precordillera terrane of northwestern Argentina has been constrained by the conodont colour alteration index (CAI) in combination with previously published paleothermal data (e.g., illite crystallinity and clay mineral assemblages). The pattern of paleotemperatures displays an increase in paleotemperatures to the west and south of the basin. This configuration shows a gradual and continuous transition from diagenesis to low-grade metamorphism, which is apparently not controlled by any of the morpho-structural subdivisions of the Precordillera (i.e., Western, Central, or Eastern). According to our results, the lower Paleozoic sedimentary burial played a secondary role in the heating of the Precordillera. Instead, the predominant component was loading by thrust sheets, which reflects the effects of the Devonian collision of Chilenia, particularly, in the Western Precordillera. Conversely, our paleothermometric data from the easternmost exposures of the Precordillera do not evidence anomalies referable to any of the accretionary events that contributed to the early Paleozoic building of the southern proto-Andean margin of Gondwana. Instead, the expected thermally altered conodonts from the Cuyania accretion are represented by metamorphosed conodont elements transported to the deeper settings of the west. The CAI data also suggest that overburden depth varied from ca. 3.6 km in the shelf region of the Eastern Precordillera to ca. 12 km in the slope to rise deposits of the Western Precordillera, thus providing constrains for the palinspastic restoration across the orogen. On the other hand, the smooth increase of peak paleotemperatures to the south of the Precordillera is associated with the exposure of deeper crustal levels at that sector, probably related to larger shortening due to stronger collisional effects, or alternatively, a weaker mechanical response of its elastic lithosphere.  相似文献   

8.
Thrusting, folding, and metamorphism of late Paleozoic to middle Mesozoic sedimentary rocks, together with high precision U–Pb zircon ages from Middle to Late Jurassic volcanic and granitic rocks, reveal evidence for a major deformation event in northwestern Hong Kong between 164 and 161 Ma. This episode can be linked with collision of an exotic microcontinental fragment along the southeast China continental margin determined from contrasting detrital zircon provenance histories of late Paleozoic to middle Mesozoic sedimentary rocks either side of an NE-trending suture zone through central Hong Kong. The suture zone is also reflected by isotopic heterogeneities and geophysical anomalies in the crustal basement. Detrital zircon provenance of Early to Middle Jurassic rocks from the accreted terrane have little in common with the pre-Middle Jurassic rocks from southeast China. Instead, the zircon age spectra of the accreted terrane show close affinities to sources along the northern margin of east Gondwana. These data provide indisputable evidence for Mesozoic terrane accretion along the southeast China continental margin. In addition, collision of the exotic terrane, accompanied by subduction rollback, is considered to have hastened foundering of the postulated flat slab beneath southeast China, leading to a widespread igneous flare-up event at 160 Ma.  相似文献   

9.
A compositional study of sandstones belonging to the lower section of the Paganzo Group (Middle Carboniferous–Early Permian) in the Paganzo Basin (northwestern Argentina) helps unravel the stratigraphic and paleogeographic evolution of the basin. Three morphotectonic units constitute the complex basement of the basin: (1) to the east, the igneous–metamorphic basement of the Sierras Pampeanas and Famatina systems; (2) to the west, the Precordillera, made up of Early and Middle Paleozoic sedimentary rocks; and (3) the Upper Paleozoic volcanic arc along the western boundary with the Río Blanco Basin. On the basis of sandstone detrital modes of the Lagares, Malanzán, Loma Larga, Guandacol, Tupe, Punta del Agua, and Río del Peñón formations, seven petrofacies are distinguished: quartzofeldespathic (QF), quartzofeldespathic-metamorphic enriched (QF-Lm), quartzofeldespathic-sedimentary enriched (QF-Ls), mixed quartzolithic (QL), quartzolithic-volcanic (QLv), volcanolithic-quartzose (LvQ), and volcanolithic (Lv). The spatial and temporal distribution of these petrofacies suggest an evolutive model for the Upper Paleozoic sedimentary filling of the basin that includes three “petrosomes”: (1) the basement petrosome, a clastic wedge of arkosic composition that diachronically prograded and thinned from east to west; (2) the recycled orogen petrosome, revealing the Protoprecordillera as a positive element in the western Paganzo Basin during the Namurian; and (3) the volcanic arc petrosome, recording volcanic activity along the western margin of Gondwana during the Westphalian.  相似文献   

10.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

11.
塔里木地块与古亚洲/特提斯构造体系的对接   总被引:32,自引:15,他引:17  
塔里木盆地为环形山链所环绕,北缘为古亚洲体系的天山弧形山链,南缘为特提斯体系的西昆仑-阿尔金弧形山链。自新元古代晚期以来,塔里木地块及周缘地区经历了古亚洲洋盆和特提斯洋盆的开启、俯冲、闭合以及微陆块多次碰撞造山,发生多期的构造、岩浆及成矿作用。特别是受印度/亚洲碰撞(60~50Ma)以来的近程效应和远程效应影响,使塔里木盆地周缘发生强烈的隆升、缩短及走滑变形,形成了现今复杂的环型造山系,完成了古亚洲体系和特提斯体系与塔里木地块的最终对接。塔里木地块与周缘两大构造体系的焊接是从早古生代开始的。研究表明,早古生代末期塔里木已与西昆仑-阿尔金始特提斯造山系链接一起。此时,塔里木地块东段与中天山增生弧地体碰撞,而西段在晚古生代与中天山增生弧地体碰撞。塔里木盆地周缘早古生代造山系中存在早古生代中期和早古生代晚期的两次造山事件,致使塔里木盆地内映现两个早古生代构造不整合面:晚奥陶世-志留纪之间的角度不整合和中晚泥盆世与早古生代之间的角度不整合。塔里木盆地早古生代的古地理、古环境和古构造研究表明,塔里木早古生代台地位于盆地的中西部,盆地东部为陆缘斜坡和深海/半深海沉积盆地,与南天山早古生代被动陆缘链接。印度/亚洲碰撞导致塔里木盆地西南缘的喜马拉雅西构造结的形成与不断推进,使特提斯构造体系与古亚洲构造体系在西构造结处靠拢及对接,终使塔里木盆地最后定型。  相似文献   

12.
The Bashkirian anticlinorium of the southwestern Urals shows a much more complex structural architecture and tectonic evolution than previously known. Pre-Uralian Proterozoic extensional and compressional structures controlled significantly the Uralian tectonic convergence. A long-lasting Proterozoic rift process created extensional basement structures and a Riphean basin topography which influenced the formation of the western fold-and-thrust-belt with inversion structures during the Uralian deformation. A complete orogenic cycle during Cadomian times, including terrane accretion at the eastern margin of the East European platform, resulted in a high-level Cadomian basement complex, which controlled the onset of Uralian deformation, and resulted in intense imbrication and tectonic stacking in the subjacent footwall of the Main Uralian fault. The Uralian orogenic evolution can be subdivided into three deformation stages with differently oriented stress regimes. Tectonic convergence started in the Late Devonian with ophiolite obduction, tectonic accretion of basin and slope units and early flysch deposits (Zilair flysch). The accretionary complex prograded from the SE to the NW. Continuous NW/SE-directed convergence resulted finally in the formation of an early orogenic wedge thrusting the Cadomian basement complex onto the East European platform. The main tectonic shortening was connected with these two stages and, although not well constrained, appears to be of Late Devonian to Carboniferous age. In the Permian a final stage of E–W compression is observed throughout the SW Urals. In the west the fold-and-thrust-belt prograded to the west with reactivation of former extensional structures and minor shortening. In the east this phase was related to intense back thrusting. The East European platform was subducted beneath the Magnitogorsk magmatic arc during the Late Paleozoic collision. The thick and cold East European platform reacted as a stable rigid block which resulted in a narrow zone of intense crustal shortening, tectonic stacking and high strain at its eastern margin. Whereas the first orogenic wedge is of thick-skinned type with the involvement of crystalline basement, even the later west-directed wedge is not typically thin-skinned as the depth of the basal detachment appears below 15 km and the involvement of Archean basement can be assumed.  相似文献   

13.
The Wolhyeonri complex in the southwestern margin of the Korean Peninsula is divided into three lithotectonic units: Late Paleozoic Zone I to the west, Middle Paleozoic Zone II in the middle and Early Paleozoic Zone III to the east. Zones II and III display characteristics of continental arc magmatic sequence. Zone II is dominated by mafic metavolcanics, whereas zone III is characterized by the presence of dismembered serpentinite bodies including chaotic mélange. These zones are proposed to have been formed in a convergent margin setting associated with subduction. Here we present zircon SHRIMP U–Pb ages from the various units within the Wolhyeonri complex which reveal the Paleozoic tectonic history of the region. The Late Carboniferous ages obtained from the main shear zone between the Wolhyeonri complex and the Paleoproterozoic Gyeonggi massif are thought to mark the timing of continental arc magmatism associated with the subduction process. In contrast, Zone I with Neoproterozoic arc magmatic remnants might indicate deposition in a forearc basin. The Wolhyeonri complex also preserves strong imprints of the Triassic collisional event, including the presence of Middle Triassic high-pressure metabasites and eclogites near the eastern boundary of the Zone III. These range of radiogenic ages derived from the Wolhyeonri complex correlate well with subduction and accretion history between the North and South China cratons. Similar geochronological features have also been indentified from the Qinling, Tongbai–Xinxian, and northern Dabie areas in east-central China. The existence of Paleozoic coeval subduction in East Asia prior to the Triassic collision is broadly consistent with a regional tectonic linkage to Gondwana.  相似文献   

14.
《Gondwana Research》2013,24(4):1316-1341
Subduction-related accretion in the Junggar–Balkash and South Tianshan Oceans (Paleo-Asian Ocean), mainly in the Paleozoic, gave rise to the present 2400 km-long Tianshan orogenic collage that extends from the Aral Sea eastwards through Uzbekistan, Tajikistan, Kyrgyzstan, to Xinjiang in China. This paper provides an up-to-date along-strike synthesis of this orogenic collage and a new tectonic model to explain its accretionary evolution.The northern part of the orogenic collage developed by consumption of the Junggar–Balkash Ocean together with Paleozoic island arcs (Northern Ili, Issyk Kul, and Chatkal) located in the west, which may have amalgamated into a composite arc in the Paleozoic in the west and by addition of another two, roughly parallel, arcs (Dananhu and Central Tianshan) in the east. The western composite arc and the eastern Dananhu and Central Tianshan arcs formed a late Paleozoic archipelago with multiple subduction zones. The southern part of the orogenic collage developed by the consumption of the South Tianshan Ocean which gave rise to a continuous accretionary complex (Kokshaal–Kumishi), which separated the Central Tianshan in the east and other Paleozoic arcs in the west from cratons (Tarim and Karakum) to the south. Cross-border correlations of this accretionary complex indicate a general southward and oceanward accretion by northward subduction in the early Paleozoic to Permian as recorded by successive southward juxtaposition of ophiolites, slices of ophiolitic mélanges, cherts, island arcs, olistostromes, blueschists, and turbidites, which are mainly Paleozoic in age, with the youngest main phase being Late Carboniferous–Permian. The initial docking of the southerly Tarim and Karakum cratons to this complicated late Paleozoic archipelago and accretionary complexes occurred in the Late Carboniferous–Early Permian in the eastern part of the Tianshan and in the Late Permian in the western part, which might have terminated collisional deformation on this suture zone. The final stages of closure of the Junggar–Balkash Ocean resembled the small ocean basin scenario of the Mediterranean Sea in the Cenozoic. In summary, the history of the Altaids is characterized by complicated multiple accretionary and collisional tectonics.  相似文献   

15.
The Late Precambrian–Early Paleozoic metamorphic basement forms a volumetrically important part of the Andean crust. We investigated its evolution in order to subdivide the area between 18 and 26°S into crustal domains by means of petrological and age data (Sm–Nd isochrons, K–Ar). The metamorphic crystallization ages and tDM ages are not consistent with growth of the Pacific margin north of the Argentine Precordillera by accretion of exotic terranes, but favor a model of a mobile belt of the Pampean Cycle. Peak metamorphic conditions in all scattered outcrop areas between 18 and 26°S are similar and reached the upper amphibolite facies conditions indicated by mineral paragensis and the occurrence of migmatite. Sm–Nd mineral isochrons yielded 525±10, 505±6 and 509±1 Ma for the Chilean Coast Range, the Chilean Precordillera and the Argentine Puna, and 442±9 and 412±18 Ma for the Sierras Pampeanas. Conventional K–Ar cooling age data of amphibole and mica cluster around 400 Ma, but are frequently reset by Late Paleozoic and Jurassic magmatism. Final exhumation of the Early Paleozoic orogen is confirmed by Devonian erosional unconformities. Sm–Nd depleted mantle model ages of felsic rocks from the metamorphic basement range from 1.4 to 2.2 Ga, in northern Chile the average is 1.65±0.16 Ga (1σ; n=12), average tDM of both gneiss and metabasite in NW Argentina is 1.76±0.4 Ga (1σ; n=22), and the isotopic composition excludes major addition of juvenile mantle derived material during the Early Paleozoic metamorphic and magmatic cycle. These new data indicate a largely similar development of the metamorphic basement south of the Arequipa Massif at 18°S and north of the Argentine Precordillera at 28°S. Variations of metamorphic grade and of ages of peak metamorphism are of local importance. The protolith was derived from Early to Middle Proterozoic cratonic areas, similar to the Proterozoic rocks from the Arequipa Massif, which had undergone Grenvillian metamorphism at ca. 1.0 Ga.  相似文献   

16.
在秦岭北带榴辉岩及其围岩片麻岩的锆石中发现金刚石和大量石墨包裹体。金刚石具典型的1331~1334cm~(-1)拉曼谱峰。变质金刚石的发现证明秦岭北带榴辉岩及其围岩片麻岩经历了超高压变质作用,其俯冲深度>120 km。片麻岩锆石的SHRIMP定年表明,锆石核部代表岩浆事件的年龄或之前的残核年龄为1200~1800 Ma,超高压变质新增生边部的年龄为507±38 Ma,属早古生代。认为北秦岭超高压变质带与印支期大别超高压变质带(240~200 Ma)是时空上两个带。北秦岭超高压变质带向西可以与南阿尔金—柴北缘早古生代(490~440Ma)超高压变质带相连,向东与大别西北部的熊店和浒湾早古生代榴辉岩(420~400 Ma)相连,组成一条沿中央造山带北部分布的加里东期超高压变质带。认为主要分布在大别山南部的印支期超高压变质带应与南秦岭的高压蓝片岩带相连,组成一条分布在中央造山带南部的印支期高压超高压变质带。北秦岭超高压变质带的发现,为中央造山带存在一条西起阿尔金,东至苏鲁的近4000 km的世界上最大的一条超高压变质带的确定提供了新的关键性证据。而沿中央造山带分布的两条超高压变质带说明:①中国南北大陆在早古生代就已拼接在一起,其后,又有印支期的俯冲和碰撞叠加,加里东期超高压变质带主要分布在北部,后者在南部,两者时  相似文献   

17.
Iran is a mosaic of Ediacaran–Cambrian (Cadomian; 520–600 Ma) blocks, stitched together by Paleozoic and Mesozoic ophiolites. In this paper we summarize the Paleozoic ophiolites of Iran for the international geoscientific audience including field, chemical and geochronological data from the literature and our own unpublished data. We focus on the five best known examples of Middle to Late Paleozoic ophiolites which are remnants of Paleotethys, aligned in two main zones in northern Iran: Aghdarband, Mashhad and Rasht in the north and Jandagh–Anarak and Takab ophiolites to the south. Paleozoic ophiolites were emplaced when N-directed subduction resulted in collision of Gondwana fragment “Cimmeria” with Eurasia in Permo-Triassic time. Paleozoic ophiolites show both SSZ- and MORB-type mineralogical and geochemical signatures, perhaps reflecting formation in a marginal basin. Paleozoic ophiolites of Iran suggest a progression from oceanic crust formation above a subduction zone in Devonian time to accretionary convergence in Permian time. The Iranian Paleozoic ophiolites along with those of the Caucausus and Turkey in the west and Afghanistan, Turkmenistan and Tibet to the east, define a series of diachronous subduction-related marginal basins active from at least Early Devonian to Late Permian time.  相似文献   

18.
Fold-interference patterns in the Bowen Basin,northeastern Australia   总被引:1,自引:1,他引:0  
Deformation patterns of Paleozoic and Mesozoic strata in eastern Australia are evidence of a structural and tectonic history that included multiple periods of deformation with variable strain intensities and orientations. Detailed analysis of structural data from the Bowen Basin in northeastern Australia reveals previously undescribed, north–south elongate, Type-1 fold-interference patterns. The Bowen Basin structures have similar orientations to previously described interference patterns of equivalent scale in upper Paleozoic strata of the New England Orogen and Sydney Basin of eastern Australia. The east Australian folds with north–south-trending axes most likely formed during late stages of the Permian–Triassic Hunter–Bowen Orogeny, and they were subsequently refolded around east–west axes during post 30 Ma collision of the Indo-Australian plate with the Eurasian and Pacific plates. The younger, east–west-trending folds have orientations that are well aligned with the present-day horizontal stress field of much of eastern Australia, raising the possibility that they are active structures.  相似文献   

19.
The northern part of the western Kunlun (southern margin of the Tarim basin) represents a Sinian rifted margin. To the south of this margin, the Sinian to Paleozoic Proto-Tethys Ocean formed. South-directed subduction of this ocean, beneath the continental southern Kunlun block during the Paleozoic, resulted in the collision between the northern and southern Kunlun blocks during the Devonian. The northern part of the Paleo-Tethys Ocean, located to the south of the southern Kunlun, was subducted to the north beneath the southern Kunlun during the Late Paleozoic to Early Mesozoic. This caused the formation of a subduction-accretion complex, including a sizeable accretionary wedge to the south of the southern Kunlun. A microcontinent (or oceanic plateau?), which we refer to as “Uygur terrane,” collided with the subduction complex during the Late Triassic. Both elements together represent the Kara-Kunlun. Final closure of the Paleo-Tethys Ocean took place during the Early Jurassic when the next southerly located continental block collided with the Kara-Kunlun area. From at least the Late Paleozoic to the Early Jurassic, the Tarim basin must be considered a back-arc region. The Kengxiwar lineament, which “connects” the Karakorum fault in the west and the Ruogiang-Xingxingxia/Altyn-Tagh fault zone in the east, shows signs of a polyphase strike-slip fault along which dextral and sinistral shearing occurred.  相似文献   

20.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号