首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using HST and ground-based optical and NIR imaging data, we investigate whether the blue compact dwarf (BCD) galaxy I Zw 18 possesses an extended low-surface brightness (LSB) old stellar population underlying its star-forming (SF) regions. We show that the exponential intensity decrease observed in the filamentary LSB envelope of the BCD out to 18″ (1.3 kpc at the adopted distance of 15 Mpc) is not due to an evolved stellar disc, but rather due to extended ionized gas emission. Broad-band images reveal, after subtraction of nebular line emission, a compact stellar LSB component extending slightly beyond the SF regions. This stellar host, being blue over a radius range of 5 exponential scale lengths and showing little colour contrast to the SF component, differs strikingly from the red LSB host of standard BCDs. This fact, in connection with the blue colours of component I Zw 18 C (see discussion in Papaderos et al. 2002), suggests that most of the stellar mass in I Zw 18 has formed within the last 0.5 Gyr. Furthermore, we show that the exponential intensity fall-off in the filamentary ionized envelope of I Zw 18 is not particular to this system but a common property of the ionized halo of many SF dwarf galaxies on galactocentric distances of several kpc. In the absence of an appreciable underlying stellar background, extended ionized gas emission dominates in the periphery of I Zw 18, superficially resembling an exponential stellar disc on optical surface brightness profiles. The case of I Zw 18 suggests caution in the search of more distant young galaxy candidates. Intense SF activity in the early phase of dwarf galaxy formation may result in an extended ionized gas halo which can be mistaken for an evolved stellar disc by studying only its exponential surface brightness profile. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
To understand the role of dwarfs in the context of galaxy formation and evolution, we are studying the star-formation history of some representative irregular and blue compact dwarf galaxies by comparing the observed colour–magnitude diagrams with synthetic ones based on homogeneous sets of stellar evolutionary tracks. Here we present the results obtained for the blue compact I Zw 18, the most metal-poor galaxy known. Our simulations suggest star-formation activity started around 1–0.3 Gyr ago, with evidence of an intense burst around 15–20 Myr ago. I Zw 18 has turned out not to be a young object as previously suggested. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.  相似文献   

4.
We present results from an ongoing X-ray survey of Wolf–Rayet (WR) galaxies, a class of objects believed to be very young starbursts. This paper extends the first X-ray survey of WR galaxies by Stevens &38; Strickland by studying WR galaxies identified subsequent to the original WR galaxy catalogue of Conti.   Out of a sample of 40 new WR galaxies a total of 10 have been observed with the ROSAT PSPC, and of these seven have been detected (NGC 1365, NGC 1569, I Zw 18, NGC 3353, NGC 4449, NGC 5408 and a marginal detection of NGC 2366). Of these, all are dwarf starbursts except for NGC 1365, which is a barred spiral galaxy possibly with an active nucleus. We also report on observations of the related emission-line galaxy IRAS 0833+6517.   The X-ray properties of these galaxies are broadly in line with those found for the original sample; they are X-ray overluminous compared with their blue luminosity and have thermal spectra with typically kT  ∼ 0.4 − 1.0 keV. There are some oddities: NGC 5408 is very overluminous in X-rays, even compared with other WR galaxies; I Zw 18 has a harder X-ray spectrum; NGC 1365, although thought to contain an active nucleus, has X-ray properties that are broadly similar to other WR galaxies, and we suggest that the X-ray emission from NGC 1365 is due to starburst activity.   A good correlation between X-ray and blue luminosity is found for the WR galaxy sample as a whole. However, when just dwarf galaxies are considered there is little evidence of correlation. We discuss the implications of these results on our understanding of the X-ray emission from WR galaxies and suggest that the best explanation for the X-ray activity is starburst activity from a young starburst region.  相似文献   

5.
We present the 6-m SAO telescope spectroscopy of HS 2134+0400, a blue compact galaxy (BCG) discovered within the framework of a dedicated Hamburg/SAO survey for low-metallicity BCGs (HSS-LM). Its very low abundance of oxygen (12 + log(O/H) = 7.44) and other heavy elements (S, N, Ne, Ar) allows this dwarf galaxy to be assigned to the group of eight lowest-metallicity BCGs among the several thousand BCGs known in the nearby Universe. The measured heavy-element abundance ratios (S/O, Ne/O, N/O, and Ar/O) are in good agreement with the typical values found for other very metal-poor BCGs. The spatial location of HS 2134+0400 is atypical of the majority of BCGs: it lies in the Pegasus void, a large region with a very low density of galaxies with normal or higher luminosities. In addition to HS 2134+0400, we found a dozen more very metal-poor galaxies in voids. Therefore, we discuss the hypothesis that this type of objects may be representative for the population of dwarf galaxies in voids.  相似文献   

6.
In an effort to understand the evolution of N, O and He abundances in gas-rich dwarf galaxies, we investigate the dispersion and mixing of supernova ejecta in relation to H  ii region evolution and develop a numerical model of chemical evolution based on a double-bursting mode of star formation (with an interval of the order of 3×107 yr between bursts of a pair) which has been designed to account for the existence of significant scatter in the N/O–O/H relation.
The dependence of the abundances on gas fraction is explored on the basis of this and similar models, in combination with various hypotheses concerning inflow and selective and non-selective outflow. The gas fractions are uncertain within wide limits for blue compact galaxies, but are more well defined for some dwarf irregulars. Selective winds do not give a good fit to N/O, while closed models and models with non-selective winds with or without inflow are all found to be viable.  相似文献   

7.
We show evidences that gas outflows occur in starburst galaxies as superbubbles evolve. We then question whether hot gas will be expelled and enrich the IGM with metals or be retained within the host galaxy. For this purpose we construct three extreme scenarios of the star formation histories for a sample of dwarf galaxies using either their present metallicity or their luminosity. The three scenarios imply different mechanical energy input rates, those are compared with theoretical lower limits for the ejection of processed matter out of host galaxies. The comparison strongly points at the existence of extended gaseous haloes acting as a barrier that allows these galaxies to retain their metals and enhance their abundance. Our findings strongly point that continuous star-forming processes, rather than coeval bursts, must contribute to the overall metallicity in our galaxy sample. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

8.
We are currently analysing image data for a large sample of blue compact dwarf galaxies (BCDs), obtained in multiple optical broad- and narrow-band filters. We present preliminary results of a multi-band analysis of two typical BCDs, Mrk 5 and I Zw 123, for which surface-brightness profiles, colour profiles, colour maps and Hα equivalent-width maps have been derived. We demonstrate how a combination of these different processing methods allows a separate analysis of the young and old stellar populations with respect to their colours and spatial distributions. By comparing the derived colours with the predictions of evolutionary synthesis models, we estimate ages of the distinct stellar populations. The surface-brightness profiles of Mrk 5 show an exponential decay at large photometric radii, with slopes typically found for BCDs. In the case of the very compact object I Zw 123, the surface-brightness profile of the underlying stellar component can be described either by an exponential or an R 1/4 law. We discuss briefly how noise effects can influence the intrinsic slope of surface brightness profiles at low surface-brightness levels. For compact objects with extended starbursts, the study of the underlying stellar population can thereby be rendered difficult. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
《New Astronomy Reviews》2000,44(4-6):329-334
Heavy element abundances derived from high-quality ground-based and Hubble Space Telescope (HST) spectroscopic observations of low-metallicity blue compact galaxies (BCGs) with oxygen abundances 12+log O/H between 7.1 and 8.3 are discussed. None of the heavy element-to-oxygen abundance ratios studied here (C/O, N/O, Ne/O, Si/O, S/O, Ar/O, Fe/O) depend on oxygen abundance for BCGs with 12+log O/H≤7.6 (ZZ/20). This constancy implies that all these heavy elements have a primary origin and are produced by the same massive (M≥10 M) stars responsible for O production. The dispersion of the C/O and N/O ratios in these galaxies is found to be remarkably small, being only ±0.03 dex and ±0.02 dex respectively. This very small dispersion is strong evidence against any time-delayed production of C and primary N in the lowest-metallicity BCGs, and hence against production of these elements by intermediate-mass (3 MM≤9 M) stars at very low metallicities, as commonly thought.In higher metallicity BCGs (7.6<12+log O/H<8.2), the Ne/O, Si/O, S/O, Ar/O and Fe/O abundance ratios retain the same constant value they had at lower metallicities. By contrast, there is an increase of the C/O and N/O ratios along with their dispersions at a given O. We interpret this increase as due to the additional contribution of C and primary N production in intermediate-mass stars, on top of that by high-mass stars. BCGs show the same O/Fe overabundance with respect to the Sun (∼0.4 dex) as galactic halo stars, suggesting the same chemical enrichment history.  相似文献   

10.
We address current theories of research on morphology, environment and evolution of active galaxies in the form of a detailed case study of the nearby QSO host I Zw 1. This study is based on sub-kpc resolution 12CO(1-0) observations with the BIMA mm-interferometer and on near-infrared imaging with ISAAC at the VLT. The 12CO(1-0) maps reveal a circumnuclear molecular gas ring with a radius of 0.9 kpc. The imaging data in the J-band are analyzed with respect to a disk-bulge decomposition. Together with a model of the gas rotation curve, the radial profile of the dynamical J-band mass-to-light ratio (M/L) is discussed. The J-band images give new evidence for an interaction between I Zw 1 and its nearby companion. First results from a sequence of N-body simulations for an extensive test of the parameter space of the interaction are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We report a catalog of 509 pairs identified among 10403 nearby galaxies with line-of-sight velocities V LG < 3500 km/s. We selected binary systems in accordance with two criteria (“bounding” and “temporal”), which require the physical pair of galaxies to have negative total energy and its components to be located inside the zero-velocity surface. We assume that individual galaxy masses are proportional to their total K-band luminosities, M = L K × 6M /L . The catalog gives the magnitudes and morphological types of galaxies and also the projected (orbital) masses and pair isolation indices. The component line-of-sight velocity differences and projected distances of the binary systems considered have power-law distributions with the median values of 35 km/s and 123 kpc, respectively. The median mass-to-K-band luminosity ratio is equal to 11M /L , and its uncertainty is mostly due to the errors of measured velocities. Our sample of binary systems has a typical density contrast of δρ/ρ c ~ 500 and a median crossing time of about 3.5 Gyr. We point out the substantial fraction of binary systems consisting of late-type dwarf galaxies, where the luminosities of both components are lower than that of the Small Magellanic Cloud. The median projected distance for 41 such pairs is only 30 kpc, and the median difference of their line-ofsight velocities is equal to 14 km/s which is smaller than the typical error for radial-velocity (30 km/s). This specific population of gas-rich dwarf binary galaxies such as I Zw 18 may be at the stage immediately before merging of its components. Such objects, which are usually lost in flux-limited (and not distance-limited) samples deserve a thorough study in the HI radio line with high spatial and velocity resolution.  相似文献   

12.
Using images from a charge-coupled device survey with the Wide Field Camera on the Isaac Newton Telescope, we performed B - and I -band photometry on 156 Virgo cluster dwarf elliptical (dE) galaxies, 25 candidate new cluster dwarfs, and nine candidate field dwarfs. Galaxies were modelled with Sérsic profiles, using both 1D χ2 and 2D cross-correlation methods, with nuclei modelled as point sources. The intensity profiles of 50 galaxies previously classified as dE, dE?, or ? are more accurately fitted if a nucleus is included, and this results in the majority of dwarfs now being classified as nucleated dwarf ellipticals (dE,N). Some faint galaxies with B magnitudes of 18–21 have particularly large relative nuclei, while a small number have apparent central dimmings. For cluster dE,N galaxies the nucleus magnitude is correlated with the magnitude of the host galaxy. The profile parameters of dE and dE,N galaxies are not significantly different, and there is no evident discontinuity in relative nucleus size between non-nucleated and nucleated dwarfs, suggesting that they may form a continuum. Nuclei are on average redder than their underlying galaxies, though a spread of relative colours was found, and two-fifths of nuclei are bluer. Formation mechanisms of nuclei are discussed: at least some appear to have formed in an already existing non-nucleated galaxy, though others may have formed simultaneously with their galaxies and subsequently evolved within them.  相似文献   

13.
We present a search for  CO(1 → 0)  emission in three Local Group dwarf irregular galaxies: IC 5152, the Phoenix dwarf and UGCA 438, using the ATNF Mopra radio telescope. Our scans largely cover the optical extent of the galaxies and the stripped H  i cloud west of the Phoenix dwarf. Apart from a tentative but non-significant emission peak at one position in the Phoenix dwarf, no significant emission was detected in the CO spectra of these galaxies. For a velocity width of 6 km s−1, we derive 4σ upper limits of 0.03, 0.04 and 0.06 K km s−1 for IC 5152, the Phoenix dwarf and UGCA 438, respectively. This is an improvement of over a factor of 10 compared with previous observations of IC 5152; the other two galaxies had not yet been observed at millimetre wavelengths. Assuming a Galactic CO-to-H2 conversion factor, we derive upper limits on the molecular gas mass of  6.2 × 104, 3.7 × 103  and  1.4 × 105 M  for IC 5152, the Phoenix dwarf and UGCA 438, respectively. We investigate two possible causes for the lack of CO emission in these galaxies. On the one hand, there may be a genuine lack of molecular gas in these systems, in spite of the presence of large amounts of neutral gas. However, in the case of IC 5152 which is actively forming stars, molecular gas is at least expected to be present in the star-forming regions. On the other hand, there may be a large increase in the CO-to-H2 conversion factor in very low-metallicity dwarfs  (−2 ≤[Fe/H]≤−1)  , making CO a poor tracer of the molecular gas content in dwarf galaxies.  相似文献   

14.
In the framework of study of the evolutionary status of galaxies in the nearby Lynx-Cancer void, we present the results of the SAO RAS 6-m telescope spectroscopy for 20 objects in this region. The principal faint line [Oiii]λ4363 Å, used to determine the electron temperature and oxygen abundance (O/H) by the classicalmethod, is clearly detected in only about 2/3 of the studied objects. For the remaining galaxies this line is either faint or undetected. To obtain the oxygen abundances in these galaxies we as well apply the semi-empirical method by Izotov and Thuan, and/or the empirical methods of Pilyugin et al., which are only employing the intensities of sufficiently strong lines. We also present our O/H measurements for 22 Lynx-Cancer void galaxies, for which the suitable Sloan Digital Sky Survey (SDSS) spectra are available. In total, we present the combined O/H data for 48 Lynx-Cancer void galaxies, including the data adopted from the literature and our own earlier results. We make a comparison of their locations on the (O/H)-MB diagram with those of the dwarf galaxies of the Local Volume in the regions with denser environment. We infer that the majority of galaxies from this void on the average reveal an about 30% lower metallicity. In addition, a substantial fraction (not less than 10%) of the void dwarf galaxies have a much larger O/H deficiency (up to a factor of 5). Most of them belong to the tiny group of objects with the gas metallicity Z ⊙/20 or 12+log(O/H)?7.35. The surface density of very metal-poor galaxies (Z ⊙/10) in this region of the sky is 2–2.5 times higher than that, derived from the emission-line galaxy samples in the Hamburg-SAO and the SDSS surveys. We discuss possible implications of these results for the galaxy evolution models.  相似文献   

15.
We present GALEX near-ultraviolet ( NUV ) and Two-Micron All-Sky Survey J -band photometry for red-sequence galaxies in local clusters. We define quiescent samples according to a strict emission threshold, removing galaxies with very recent star formation. We analyse the NUV – J colour–magnitude relation (CMR) and find that the intrinsic scatter is an order of magnitude larger than for the analogous optical CMR (∼0.35 rather than 0.05 mag), in agreement with previous studies. Comparing the NUV – J colours with spectroscopically derived stellar population parameters, we find a strong  (>5.5σ)  correlation with metallicity, only a marginal trend with age, and no correlation with the α/Fe ratio. We explore the origin of the large scatter and conclude that neither aperture effects nor the UV upturn phenomenon contribute significantly. We show that the scatter could be attributed to simple 'frosting' by either a young or a low-metallicity subpopulation.  相似文献   

16.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

17.
Infall models for the evolution of the local galactic disk were studied and confronted with a large number of observational constraints from the solar vicinity, inclusive of the white dwarf luminosity function. The models are characterized as follows: 1. The key-functions (SFR, IMF, gas infall rate) are not prescribed by simple laws, but are directly derived from observational constraints. 2. A scatter in the metallicity at fixed age is considered which partly reflects inhomogeous chemical evolution. 3. Special attention is drawn to the internal consistency of the models. 4. In addition to infall of low-metallicity gas, metal-enriched outflows are allowed. The “best” model is characterized by a disk age of ≈︁ 12 Gyr, a SFR which is decreasing over the first half and is nearly constant over the second half of the disk evolution, and by a similar temporal run of the gas infall rate. Moderate metal-enriched outflow can not be excluded.  相似文献   

18.
We present intermediate-resolution spectroscopic data for a set of dwarf and giant galaxies in the Coma cluster, with  −20.6 < MR < −15.7.  The photometric and kinematic properties of the brighter galaxies can be cast in terms of parameters which present little scatter with respect to a set of scaling relations known as the fundamental plane. To determine the form of these fundamental scaling relations at lower luminosities, we have measured velocity dispersions for a sample comprising 69 galaxies on the border of the dwarf and giant regime. Combining these data with our photometric survey, we find a tight correlation of luminosity and velocity dispersion,   L ∝σ2.0  , substantially flatter than the Faber–Jackson relation characterizing giant elliptical galaxies. In addition, the variation of mass-to-light ( M / L ) ratio with velocity dispersion is quite weak in our dwarf sample:   M / L ∝σ0.2.  Our overall results are consistent with theoretical models invoking large-scale mass removal and subsequent structural readjustment, e.g. as a result of galactic winds.  相似文献   

19.
We present a study of the [α/Fe-peak] and [N/α] abundance ratios in Damped Lyα (DLA) systems. By using ratios of undepleted elements ([S/Zn] and [N/S]) or when abundances of refractory elements are corrected by dust depletion ([Si/Fe]corr), the resulting ratios do not resemble those observed in the Galactic metal-poor stars, showing instead similarities with those ratios observed in dwarf galaxies. These results challenge the idea that these absorbers are the progenitors of the present-day spiral galaxies, and suggest an origin in low-mass galaxies for the systems up to now investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
And IV is a low surface brightness (LSB) dwarf galaxy at a distance of 6.1 Mpc, projecting close to M 31. In this paper the results of spectroscopy of the And IV two brightest HII regions with the SAO 6-m telescope (BTA) are presented. In spectra of both of them the faint line [OIII]λ4363 Å was detected and this allowed us to determine their O/H by the classical Te method. Their values for 12+log(O/H) are equal to 7.49±0.06 and 7.55±0.23, respectively. The comparison of the direct O/H calculations with the two most reliable semi-empirical and empirical methods shows the good consistency between these methods. For And IV absolute blue magnitude, MB = ?12.6, our value for O/H corresponds to the ‘standard’ relation between O/H and LB for dwarf irregular galaxies (DIGs). And IV appears to be a new representative of the extremely metal-deficient gas-rich galaxies in the Local Volume. The very large range of M(HI) for LSB galaxies with close metallicities and luminosities indicates that simple models of LSBG chemical evolution are too limited to predict such striking diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号