共查询到19条相似文献,搜索用时 72 毫秒
1.
有限差分法探地雷达波动方程偏移成像 总被引:9,自引:2,他引:9
在探地雷达(Ground-Penetrating Radar,简称GPR)剖面中,由于绕射波的存在,使得资料的处理解释十分困难,其结果的准确性与真实度也会降低。针对这一问题,作者提出了探地雷达有限差分波动方程偏移法,首先进行了理论模型的实验分析,在此基础上我们对实测GPR剖面资料进行分析处理,取得了较好的成果。 相似文献
2.
探地雷达时域有限差分法正演模拟 总被引:2,自引:0,他引:2
在以往雷达波的正演模拟中,借鉴地震波中成熟的正演模拟方法,均采用模拟声波方程的方法,精度不够高。因此从麦克思韦方程组出发,采用目前电磁场理论中最常用的时域有限差分法,对探地雷达进行了正演模拟。为了进一步说明其正确性,对正演模拟的结果又进行了偏移处理,从结果看出该方法的正确性及可行性。 相似文献
3.
探地雷达信号的高阶时间域有限差分模拟 总被引:1,自引:0,他引:1
探地雷达信号时域有限差分法模拟,多采用二阶精度的中心差分法近似(FDTD(2.2)),虽然计算简单,但数值色散误差较大,影响了模拟精度。在解决较复杂介质分布的探地雷达信号时,不能很好地反映信号的精细变化。而高阶时域有限差分模拟能减少数值色散带来的误差,提高了模拟的精度。采用各向异性完全匹配层(UPML)作为吸收边界条件,实现了高阶计算,有效地吸收边界电磁波反射,而且提高了计算效率。通过模拟的结果分析可知,高阶时域有限差分法能很好地提高模拟精度。 相似文献
4.
基于探地雷达正演模拟软件GprMax,针对地下水不同污染途径和不同污染介质,建立了地下水污染的5种模型,采用有限差分法进行了数值模拟计算。模拟结果表明探地雷达在探测地下水污染中有较好的应用效果。 相似文献
5.
6.
吸收边界条件在探地雷达偏移处理中的应用 总被引:2,自引:0,他引:2
在雷达波偏移处理中。通常将边界条件设为零,但是这会在边界处产生由非介质因素引起的反射现象,使得剖面的解释精度降低。因此,为了消除反射边界的影响,提出将吸收边界条件引入到逆时偏移中,并将其运用到实测雷达波剖面上。结果表明。该方法很好地消除了人为边界,精度也得到了明显提高。 相似文献
7.
8.
目前探地雷达正演模拟。都是针对简单的层状模型、圆状空洞、正方形空洞等单一的规则模型,而对于地下弯曲的界面或“V”字形等复杂模型的正演,实现起来较为困难。然而,地下构造是复杂的,因此,对复杂地电模型的正演研究显得更为重要。这里以麦克斯韦两个旋度方程为基本出发点,运用K.S.Yee的空间网格模型理论和时域有限差分法的基本原理,推导出二维空间的探地雷达正演方程组,通过讨论数值频散关系及其产生原因,推导出符合探地雷达实际传播规律的理想频散关系。为解决正演模拟时截断边界处的超强反射,采用了Mur超吸收边界条件.并以自制的探地雷达正演模拟程序为依托,对两个复杂的探地雷达模型进行了正演模拟,得到了正演剖面图。从其后模拟实例中的两正演剖面图可以看出,边界截断处的干扰波被大大地减少,消除边界反射后的雷达剖面能更好地指导工作人员进行地质解释,从而达到了把雷达的正演研究深入到复杂地电模型中去的目的,使正演研究更符合实际的地质情况。 相似文献
9.
在雷达频带范围内电磁波传播的实际模拟需要完全解Maxwell方程以及介质特性的完整描述。我们提出了一种求解Maxwell方程的2-D有限差分方法,它能够模拟通常情况下与频率有关的电介质的衰减与扩散。与粘滞声波情况非常相似,通过假设一个电介质松弛函数可以获得主导方程。在模型周围加上高导边框后实现了吸收边界条件。这种“扩散边界条件”被证明比通常使用的旁轴近似吸收边界条件更优越,即使是非常薄的导电体(≤ 相似文献
10.
11.
基于地质雷达和钻孔数据的三维地层建模 总被引:3,自引:1,他引:2
为了结合地质雷达探测图像和钻孔数据共同用于地层的三维建模,根据反射波组的同相性和反射波形的相似性,通过与钻孔采样数据的对比,从处理后的地质雷达数据中提取出虚拟钻孔数据用于建模;基于该类数据的一般分布特点,根据曲面光顺的条件构建了网格的插值算法。采用该方法对某区域进行了三维地层建模。 相似文献
12.
为了更好地分析探地雷达(GPR)叠前逆时偏移算法对实际地下随机分布介质的成像效果,采用随机过程的谱分解和混合型自相关函数理论构建了不同自相关长度的GPR随机介质模型。基于时域有限差分法(FDTD)构建了GPR叠前逆时偏移成像算法,其中FDTD用于计算正传和反传电磁波场,归一化互相关成像条件用于获取逆时偏移成像剖面。在此基础上,利用该算法对两个随机介质模型的多偏移距正演数据进行计算,并与相应背景介质为均匀介质的逆时偏移结果进行对比。结果表明:电磁波在随机介质中散射强烈,反射波扭曲变形、不连续,形成了明显的随机扰动,致使逆时偏移成像剖面的空间分辨率更低,低频噪声更强;自相关长度是影响随机介质中异常体成像效果的主要因素,自相关长度越小,异常体的成像越清晰,自相关长度越大,异常体的成像效果越差,且不易被识别。 相似文献
13.
14.
Maksim Bano Olivier Loeffler Jean-François Girard 《Comptes Rendus Geoscience》2009,341(10-11):846-858
Ground penetrating radar (GPR) is a non-destructive method which, over the past 10 years, has been successfully used not only to estimate the water content of soil, but also to detect and monitor the infiltration of pollutants on sites contaminated by light non-aqueous phase liquids (LNAPL). We represented a model water table aquifer (72 cm depth) by injecting water into a sandbox that also contains several buried objects. The GPR measurements were carried out with shielded antennae of 900 and 1200 MHz, respectively, for common mid point (CMP) and constant offset (CO) profiles. We extended the work reported by Loeffler and Bano by injecting 100 L of diesel fuel (LNAPL) from the top of the sandbox. We used the same acquisition procedure and the same profile configuration as before fuel injection. The GPR data acquired on the polluted sand did not show any clear reflections from the plume pollution; nevertheless, travel times are very strongly affected by the presence of the fuel and the main changes are on the velocity anomalies. We can notice that the reflection from the bottom of the sandbox, which is recorded at a constant time when no fuel is present, is deformed by the pollution. The area close to the fuel injection point is characterized by a higher velocity than the area situated further away. The area farther away from the injection point shows a low velocity anomaly which indicates an increase in travel time. It seems that pore water has been replaced by fuel as a result of a lateral flow. We also use finite-difference time-domain (FDTD) numerical GPR modelling in combination with dielectric property mixing models to estimate the volume and the physical characteristics of the contaminated sand. 相似文献
15.
以多视角二维图像为基础进行复杂形状颗粒三维重构。以具有复杂形状的钙质砂颗粒为样本,针对块状、条状以及树枝状等典型复杂形状颗粒进行重构,并以凸度、圆形度以及长宽比等形状指标为依托对其最终重构精度进行表征。在重构过程中,以颗粒初始投影面为基础绕轴转动获取一系列颗粒二维投影图像,并提取其边界坐标值,而后利用三维点云与所获取的二维图像轮廓坐标进行定位匹配,并删除位于二维图像轮廓外部点集,最终得到使得所有点均位于所获取的系列二维图像轮廓内。在此基础上,进一步对点云实体化处理并构建得到三维实体。通过对150个不同形状颗粒展开重构,统计发现90%以上颗粒的重构误差在10%以内,其中,误差范围最大的为树枝状颗粒,最大误差为10.84%,最小误差则小于1.00%。该方法原理简单,可有效地构建得到精度较高的复杂形状颗粒三维模型。 相似文献
16.
17.
原始地震数据中饱含丰富的反映相位的走时信息和反映反射率的振幅信息。基于波场延拓理论的波动方程保幅地震偏移成像,是在给出正确构造成像位置的同时也给出真实反射振幅的有效完善。基于全声波方程,利用严格的解耦理论进行单程波动保幅分解,得到一个由波场传播项与振幅补偿项构成的,在走时与振幅上满足全声波方程对应的程函方程与输运方程的保幅单程波动方程;利用摄动理论进行单平方根算子渐进展开,推导出基于保幅波动方程的广义高阶屏地震偏移算子方程。模型测试和实际资料处理表明,该方法不但可以凭借更准确的相位归位和散射能量聚焦提高构造成像精度,而且输出了能更正确反映地下反射属性的能量信息,从而可以为更深层次的勘探开发,提供地球物理技术支撑。 相似文献
18.
19.
Fathy Shaaban Turki M. Habeebullah Essam A. Morsy Safwat Gabr 《Arabian Journal of Geosciences》2016,9(20):754
This work presents the application of the ground-penetrating radar (GPR) method and electric resistivity tomography (ERT) technique in outlining a zone of contamination due to the light non-aqueous phase liquid (LNAPL) plume underground in the area of an impacted fuel station, close to Abha City. The GPR has been performed using SIR3000 unit with the 100 and 400 MHz antennas. The main objective of the GPR survey was to evaluate the lateral extension of contamination. The complex GPR signature of the plume was well characterized. Low reflectivity zone corresponds to hydrocarbon vapor phase in the vadose zone. Enhanced reflections are associated with free and residual products in the fractured saturated zone directly above the water table. An electric resistivity tomography (ERT) survey was performed on four profiles within the site to investigate the vertical and horizontal extent of the contamination plume and to define the bottom of the landfill. The 2D electric profiles show the presence of low-resistivity (4O to 37 Ω m) anomalies that refers to the presence of accumulated hydrocarbons. From the interpretation of the GPR and ERT profile, it was possible to locate the top and bottom of the contamination plume of the waste disposal site. The radar signal penetrated deep enough and enabled the identification of a second reflector at approximately 10-m deep, interpreted as the hard basement surface which causes the strong amplitude reflection in the GPR profile. The results of GPR and ERT showed good agreement. 相似文献