首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present the results of our analysis of the RXTE observations for two transient sources, IGR J17091-3624 and IGR J18539+0727, in April 2003. The derived energy spectra of the sources and the power-density spectra of their light curves make it possible to classify them as low/hard-state X-ray binaries. The parameters of the power spectrum for IGR J18539+0727 lead us to tentatively conclude that the compact object in this binary is a black hole.  相似文献   

2.
The X-ray source IGR J16318-4848 was the first source discovered by INTEGRAL on January 29, 2003. The high energy spectrum exhibits such a high column density that the source is undetectable in X-rays below 2 keV. On February 23–25, 2003 we triggered a Target of Opportunity (ToO) Program using the EMMI and SOFI instruments on the New Technology Telescope of the European Southern Observatory (La Silla) to get optical and near-infrared (NIR) observations. We discovered the optical counterpart, and confirmed the already proposed candidate in the NIR. NIR spectroscopy revealed a large amount of emission lines, including forbidden iron lines and P-Cygni profiles, showing a strong similarity with CI Cam, another strongly absorbed source. Together with the spectral energy distribution (SED), these data point to a high luminosity, high temperature source, with an intrinsic absorption greater than the interstellar absorption, but two orders of magnitude below the X-ray absorption. All these observations show that IGR J16318-4848 is a high mass X-ray binary (HMXB) at a distance between 0.9 and 6.2 kpc, the mass donor being an early-type star, probably a sgB[e] star, surrounded by a dense and absorbing circumstellar material. This would make the second HMXB with a sgB[e] star as the mass donor after CI Cam. Other sources, discovered by INTEGRAL near IGR J16318-4848 in the direction of the Norma arm, present the same characteristics, at least in X-rays. Such sources may represent a different evolutionary state of X-ray binaries previously undetected with the lower energy space telescopes; if it is so, a new class of strongly absorbed X-ray binaries is being unveiled by INTEGRAL. Out of the 15 sources present in this region, only one might be associated with an unidentified EGRET source: IGR J16393-4643. Therefore these obscured INTEGRAL sources do not seem to be powerful high energy (E > 100 MeV) emitters. Based on observations collected at the European Southern Observatory, Chile (proposal ESO N 70.D-0340).  相似文献   

3.
4.
We present the results of our optical identification of the hard X-ray source IGR J18257-0707 through its spectrophotometric observations with the optical RTT-150 telescope. The accurate position of the X-ray source determined using Chandra observations has allowed this source to be confidently associatedwith a faint optical object (m R ≈ 20.4) whose optical spectrumexhibits a broad H α emission line at redshift z = 0.037. Thus, the source IGR J18257-0707 is a type-1 Seyfert galaxy at redshift z = 0.037.  相似文献   

5.
Results of the optical identification of the hard X-ray source IGR J08390-4833 recently discovered in the INTEGRAL all-sky survey are presented. We show that the source is most likely a cataclysmic variable, i.e., an accreting white dwarf in a binary. Analysis of its optical light curve clearly reveals intrinsic variability on timescales of the order of an hour or longer. However, the short time of the source’s optical observations does not allow a definitive conclusion about the periodicity of the detected variability to be reached. Further optical and X-ray observations are required for a more accurate classification of the source.  相似文献   

6.
We analyze the observations of the X-ray pulsar LMCX-4 performed by the INTEGRAL observatory and the All-Sky Monitor (ASM) of the RXTE observatory over a wide energy range. The observed hard X-ray flux from the source is shown to change by more than a factor of 50 (from ~70 mCrab in the high state to ~1.3 mCrab in the low state) on the time scale of the accretion-disk precession period, whose mean value for 1996–2004 was determined with a high accuracy, Pprec = 30.275 ± 0.004 days. In the low state, a flare about 10 h in duration was detected from the source; the flux from the source increased by more than a factor of 4 during this flare. The shape of the pulsar’s broadband spectrum is essentially invariable with its intensity; no statistically significant features associated with the possible resonance cyclotron absorption line were found in the spectrum of the source.  相似文献   

7.
Analysis of the RXTE slew data in October 1996 revealed a weak X-ray burst from the millisecond pulsar SAX J 1808.4-3658. The 3–20-keV energy spectrum of the source can be described by a power law with an index of 2.0 and a(3-to 20 keV) luminosity of ~1.4×1035 erg s?1 (the distance to the source was taken to be 2.5 kpc). Because of the short exposure time, we failed to detect weak pulsations at a frequency of 401 Hz in the source. The (2σ) upper limit of the pulse fraction is ~13%.  相似文献   

8.
We have used the RXTE and INTEGRAL satellites simultaneously to observe the high-mass X-ray binary (HMXB) IGR J19140+0951. The spectra obtained in the 3–80 keV range have allowed us to perform a precise spectral analysis of the system along its binary orbit. The spectral evolution confirms the supergiant nature of the companion star and the neutron star nature of the compact object. Using a simple stellar wind model to describe the evolution of the photoelectric absorption, we were able to restrict the orbital inclination angle in the range 38°–75°. This analysis leads to a wind mass-loss rate from the companion star of  ∼5 × 10−8 M yr−1  , consistent with an OB I spectral type. We have detected a soft excess in at least four observations, for the first time for this source. Such soft excesses have been reported in several HMXBs in the past. We discuss the possible origin of this excess, and suggest, based on its spectral properties and occurrences around the superior conjunction, that it may be explained as the reprocessing of the X-ray emission originating from the neutron star by the surrounding ionized gas.  相似文献   

9.
We present the observations of the X-ray burster KS 1731-260 from 1988 until 1999 with the Kvant/TTM telescope supplemented with published data from the ASM and PCA instruments of the RXTE observatory for 1996–2001. We constructed the light curve of the source and confirmed the dependence of spectral variations on its X-ray luminosity.  相似文献   

10.
We analyze the observations of the X-ray pulsar KS 1947+300 performed by the INTEGRAL and RXTE observatories over a wide (3–100 keV) X-ray energy range. The shape of the pulse profile was found to depend on the luminosity of the source. Based on the model of a magnetized neutron star, we study the characteristics of the pulsar using the change in its spin-up rate. We estimated the magnetic field strength of the pulsar and the distance to the binary.  相似文献   

11.
Observations of the X-ray burster SLX 1732-304 in the globular cluster Terzan 1 with the PCA/RXTE instrument in April 1997 are presented. The source was in a low state; its flux in the standard X-ray band was half the flux recorded by the ART-P/Granat telescope in 1990 also during its low state. At the same time, its spectrum was softer than the ART-P spectrum; it was well described by a power law with a photon index of 2.3 without any evidence of a high-energy cutoff.  相似文献   

12.
We present the preliminary results of our analysis of the observations of the X-ray pulsar SAX J2103.5+4545 by the INTEGRAL Observatory in December 2002. We mapped this region of the sky in a wide energy range, from 3 to 200 keV. The detection of the source is shown to be significant up to energies of ~100 keV. The hard X-ray flux in the energy range 15–100 keV is variable and presumably depends on the orbital phase. We show that the shape of the pulsar spectrum and its parameters derived from 18–150-keV IBIS data are compatible with the RXTE observations of the source.  相似文献   

13.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

14.
When analyzing the archival data of the INTEGRAL observatory, we detected an intense X-ray burst recorded on April 16, 2005, by the JEM-X and IBIS/ISGRI telescopes from the weak and poorly studied source AX J1754.2-2754. Analysis of its time profiles and spectra allows this event to be attributed to type I X-ray bursts associated with thermonuclear explosions on the surfaces of neutron stars and the source itself to X-ray bursters. Peculiarities of the X-ray emission observed at the initial evolutionary phase of the burst point to a dramatic expansion and a corresponding cooling of the neutron star photosphere that took place at this time under the action of radiation pressure. Assuming the luminosity of the source at this phase to be the Eddington one, we have estimated the distance to the burst to be d = 6.6 ± 0.3 kpc (for a hydrogen atmosphere of the neutron star) and d = 9.2 ± 0.4 kpc (for a helium atmosphere).  相似文献   

15.
In 1998–1999, the X-ray transients XTE J2012+381 and XTE J1550-564 were observed with the TTM X-ray telescope onboard the Mir-Kvant astrophysical module. Spectral properties of these sources on the descent of the light curve after the secondary maxima of their outbursts are studied. Upper limits on the off-state flux are given. Comparison with other X-ray novae observed with the TTM telescope leads us to conclude that XTE J2012+381 and XTE J 1550-564 are soft X-ray novae. XTE J2012+381 probably belongs to the subclass of long-period X-ray transients.  相似文献   

16.
We present the INTEGRAL and RXTE X-ray observations of XTE J1550-564, a Galactic microquasar and a black hole candidate, during its outburst in the spring of 2003. The source during the outburst was in a canonical hard state, and its spectrum remained constant in both the rise and decay phases.  相似文献   

17.
We carried out I , R , V and B photometric observations of the neutron star X-ray binary RXTE J2123−058 shortly after the end of the X-ray outburst in mid-1998. We adopt the low-mass binary model to interpret our observations. After folding our data on the 0.24 821‐d orbital period, and correcting for the steady brightness decline following the outburst, we observed sinusoidal oscillations with hints of ellipsoidal modulations which became progressively more evident. Our data also show that the decline in brightness was faster in the V band than in the R and I bands. This suggests both the cooling of an irradiation-heated secondary star and the fading of an accretion disc over the nights of our observations.  相似文献   

18.
We present RXTE observations of the X-ray source Cyg X-2 during 1996–1999. Its power-density spectra in the 0.1–128-Hz band are fitted by a model that takes into account the power-law spectral behavior at frequencies below and above the break frequency, with an introduction of one or more Lorenz lines to describe the peaks of quasi-periodic oscillations that correspond to the horizontal branch of the Z track. The RXTE observations revealed a positive correlation between the break frequency and the indices of the two parts of the spectrum. The spectrum steepens with increasing break frequency both above and below the break frequency.  相似文献   

19.
During the observation of the Galactic-center field by the INTEGRAL observatory on September 9, 2003, the IBIS/ISGRI gamma-ray telescope detected a short (several-hours-long) intense (~380 mCrab at the peak) outburst of hard radiation from the X-ray transient SAX J1818.6-1703. Previously, this source was observed only once in 1998 during a similar short outburst. We present the results of our localization, spectral and timing analyses of the object and briefly discuss the possible causes of the outburst. The release time of the bulk of the energy in such an outburst is appreciably shorter than the accretion (viscous) time that characterizes the flow of matter through a standard accretion disk.  相似文献   

20.
Using an Infrared photometer with InSb photovoltaic detector at the 182cm Copernicus telescope of the Asiago Observatory, Italy, we have measured theJHKL’ M magnitudes of 12 IRC sources 7 of which are very late type stars with [ICIT -K] greater than 5 magnitudes. These data have been fitted to blackbody distributions to obtain their effective temperatures. The present data, in combination with other available photometric data at longer wavelengths seems to indicate excess emission at 11 μm from sources 10066, 10510 and 10234, and at 19.8 μm from source 20052. The source 60098 shows extreme infrared colours. Work carried out when the first author was a guest scientist at Max Planck-Institut für Extraterrestrische Physik,Garching FRG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号