首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mafic-ultramafic rocks of Archaean age constitute a significant component of the Eastern Indian Craton. These occur in two different modes. In the eastern belt these occur as a long, linear enclave within the Singhbhum granite and the primary banding in them is subvertical. In the more extensive western belt along the periphery of the Singhbhum granite, the disposition of the primary banding is subhorizontal. The major rock type in both the belts is meta-basalt with minor peridotitic komatiite and basaltic komatiite occurring in the eastern belt. Rare ultramafic rocks with cumulate textures are present in both the belts. The larger volume of the basaltic rocks preclude the possibility of their being derived by fractional crystallization of the high-MgO components. On the basis of trace element and REE characters the rocks may be classified into three groups. One of the groups shows a tholeiitic trend and include samples mostly from the eastern belt while the second consisting mostly of samples from the western belt shows a calc-alkaline trend. The third group includes samples having elemental ratios intermediate between these two groups. Zr/Nb ratios for the tholeiitic and calc-alkaline samples are different suggesting their sources to be different. The tholeiitic samples have been generated from a source having chondritic REE characters, while the calc-alkaline samples have been generated from a source with LREE enriched character. The high-MgO components in both the groups are suggested to represent high degrees of melting compared to the basalts in each group. It is further suggested that the tholeiitic basalts have been generated relatively early from a chondritic source. Down-buckling of this material has added LREE enriched melts to the source, thereby changing its character into a LREE enriched one. Melting of a source with such changed character has subsequently produced the calc-alkaline melts. Rocks with variable but intermediate characters between these two groups have been generated as a result of contamination between these two groups.  相似文献   

2.
Several small Mn–Fe oxide and Mn-oxide ore bodies associated with Precambrian Iron Ore Group of rocks are located within Koira-Noamundi province of north Orissa, India. These deposits are classified into in situ (stratiform), remobilized (stratabound) and reworked categories based on their field disposition. Volcaniclastic/terrigenous shale in large geographic extension is associated with these ore bodies.The in situ ore bodies are characterised by cryptomelane-, romanechite- and hematite-dominating minerals, low Mn/Fe ratio (1.1) and relatively lower abundance of trace (1500–2500 ppm) constituents. In such type of deposits the stratigraphic conformity of oxides with the tuffaceous shale suggests precipitation of Mn and Fe at a time of decreased volcaniclastic/terrigenous contribution. The minor and trace elements were removed from solution by adsorption rather than by precipitation. Both Mn and Fe oxides when precipitated adsorb trace elements strongly but the partitioning of elements takes place during diagenesis. The inter-elemental relationship reveals that Cu, Co, Ni, Pb and Zn were adsorbed on precipitating hydrous Mn oxides and form manganates. Some of these elements probably get desorbed from Fe oxide because of their inability to substitute for Fe3+ in the lattice of its oxide. However, P, V, As and Mo were less partitioned and retained in Fe-oxide phase. Positive correlation between Al2O3 and SiO2, MgO, Na2O, TiO2 and some traces like Li, Nb, Sc, Y, Zr, Th and U points to their contribution through volcaniclastic/terrigenous detritus of both mafic and acidic composition.The remobilized ore bodies are developed in a later stage through dissolution, remobilization and reprecipitation of Mn oxides in favorable structural weak planes under supergene environment. Increase in average Mn/Fe ratio (8) and trace content (5000–8500 ppm) by 5–2.5 orders of magnitude, respectively, or more above its abundance in adjoining/underlying protore is characteristic of these deposits. The newly formed Mn ores constituting lithiophorite, cryptomelane/romanechite and goethite get quantitatively enriched in traces like Cu, Co, Ni, Pb and Zn. Positive correlation between Mn, Li, Co and Zn is due to the formation of mineral of lithiophorite–chalcophanite group during redistribution and reconcentration of Mn oxide. P and V, which were present in Fe oxide, also get dissolved and reprecipitate with Fe oxyhydroxide in these ores. Some other elements like Y, Th and U show positive relation with Fe. This is probably due to leaching of these elements during chemical weathering of associated shale and getting re-adsorbed in Fe-oxyhydroxide phase.However, under oxidizing environment selective cations like Ba, K, etc. resorb from Mn-structure, resulting in the development of pyrolusite (Mn/Fe>20). In such transformation, trace metals from pyrolusitic structure expels out, resulting thereby in a considerable reduction in total trace value (<3000 ppm).The reworked ore bodies are allochthonous in nature and developed through a number of stages during terrain evolution and lateritisation. Secondary processes such as reworking of pre-existing crust; solution and remobilization; precipitation and cementation and transport, etc. are responsible for their development. Such deposits are usually very low in Mn/Fe ratio (3) and trace content (<2000 ppm).  相似文献   

3.
The major, trace and rare earth element (REE) composition of Late Archean manganese, ferromanganese and iron ores from the Iron Ore Group (IOG) in Orissa, east India, was examined. Manganese deposits, occurring above the iron formations of the IOG, display massive, rhythmically laminated or botryoidal textures. The ores are composed primarily of iron and manganese, and are low in other major and trace elements such as SiO2, Al2O3, P2O5 and Zr. The total REE concentration is as high as 975 ppm in manganese ores, whereas concentrations as high as 345 ppm and 211 ppm are found in ferromanganese and iron ores, respectively. Heavy REE (HREE) enrichments, negative Ce anomalies and positive Eu anomalies were observed in post‐Archean average shale (PAAS)‐normalized REE patterns of the IOG manganese and ferromanganese ores. The stratiform or stratabound shapes of ore bodies within the shale horizon, and REE geochemistry, suggest that the manganese and ferromanganese ores of the IOG were formed by iron and/or manganese precipitation from a submarine, hydrothermal solution under oxic conditions that occurred as a result of mixing with oxic seawater. While HREE concentrations in the Late Archean manganese and ferromanganese ores in the IOG are slightly less than those of the Phanerozoic ferromanganese ores in Japan, HREE resources in the IOG manganese deposits appear to be two orders of magnitude higher because of the large size of the deposits. Although a reliable, economic concentration technique for HREE from manganese and ferromanganese ores has not yet been developed, those ores could be an important future source of HREE.  相似文献   

4.
The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored. The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.  相似文献   

5.
Abstract. Several meso‐scale manganese ore bodies, scattered within Jone's horse‐shoe shaped synclinorium, in Bonai‐Keonjhar region of north Orissa are well known in the mineral map of India. Different grades of manganese ores are being exploited from this region by various agencies over a few decades. However, deceptive nature of ore bodies and complexity in control of mineralisation greatly confuse the exploration geologists for evaluation of these resources. In a recent study, the authors have classified Mn‐ore bodies of this region into three broad categories such as stratiform, stratabound (‐replacement) and lateritoid types based on mode of occurrence and their other chemical characteristics. Mn‐ore bands occur in close association with BIF and iron ores. Volcaniclastic shale in large geographic extension encloses these ore bodies. In the stratiform category of ore bodies (BMnF, analogous of BIF), manganese and shale bands, in variables thickness, alternate with each other and extend to a great depth. Such ore bodies generally constitute marginal to low‐grade ores, are characterised by low Mn/Fe ratio (~2) and have relatively lower abundance of trace (1500 to 2500 ppm) and relatively higher REE constituents. The stratabound‐replacement types of ore bodies are of intra‐stratal nature, occurring within tuffaceous shale. These are mostly shear‐controlled ore bodies extending along a zone of certain width. Increase in average Mn/Fe ratio (~6) and trace content (5000 to 8500 ppm) by 5 to 2.5 order of magnitude respectively or more above stratiform category are characteristic of these deposits. The lateritoid ore bodies have limited depth persistency. Such deposits are usually very low in Mn/Fe ratio (<1), trace (<2000 ppm) and REE contents. Different methods of exploration techniques are suggested for various categories of Mn‐ore bodies. In this context, the above findings would be the database for the exploration geologists to evaluate the potential of newer/existing Mn‐ore resources in this part of north Orissa.  相似文献   

6.
Mafic dikes, which transect the Mesoarchaean Singhbhum Granitoid Complex, are the most abundant members of the Newer Dolerite dikes of the Singhbhum Orissa craton. These dikes are subalkaline and exhibit a tholeiitic differentiation trend. Studied dikes underwent fractional crystallization of clinopyroxene and plagioclase. They show enriched patterns for the light rare earth elements (LREE) and large ion lithophile elements (LILE). On primitive mantle-normalized multi-element patterns, they possess Ba, Nb, Sr, P, and Ti depletions similar to subduction-related basaltic rocks. The high (La/Yb) n and (Gd/Yb) n ratios suggest that the studied mafic dikes were derived by low degrees of partial melting of a garnet-bearing source. Judging by trace elemental ratios (e.g. Ba/Y, Nb/Y, Ba/Th and Th/Nb), the studied dikes were derived from a mantle source metasomatized by a subduction component (e.g. fluids derived by dehydration of the subducting slab). We conclude that interaction between these fluids and the overlying mantle was the main cause of (LREE and LILE) enrichment and Nb (high field strength elements) depletion in the mafic dikes.  相似文献   

7.
The Archaean cratonic nuclei of the continents are important as they contain the most significant evidences for the evolution of Earth e.g. the greenstone sequences. In the Indian Shield, one of the important cratons is the Singhbhum craton, where nearly 95% of the Indian chromite deposits and only PGE deposits are located which are hosted within Mesoarchaean ultramafic-mafic rock sequences. The ultramafic units occur as sill like intrusions within the Iron Ore Group (IOG) greenstone belts and often associated with gabbroic intrusions. In the Nuasahi and Sukinda mining districts of these occurrences, detailed petrological, geochemical and isotopic studies have been carried out in the last decades. Petrological and geochemical studies indicate a supra-subduction zone (SSZ) tectonic settings in Archaean for the origin of these ultramafic-mafic sequences. The Os isotopic and platinum group element (PGE) geochemical studies of chromites from the two mining districts indicate presence of a subchondritic source mantle domain beneath and within the Singhbhum craton similar to the Zimbabwean craton of southern African continent. The Os model age calculation indicates melt extraction from a subcontinental lithospheric mantle (SCLM) before 3.7 Ga which is similar to the other ancient cratons. As a whole the study supports the premise that India was part of the African continent in pre-Gondwana times and even in early Archaean and suggest possible amalgamation and building up of a supercontinent during late Archaean. However, in comparison with other occurrences, the Singhbhum craton of the Indian Shield and the Zimbabwean craton in southern Africa are characterized by the presence of subchondritic lithospheric mantle domains within the SCLM, which were developed prior to 3.7 Ga.  相似文献   

8.
The dominant geodynamic processes that underpin the formation and evolution of Earth’s early crust remain enigmatic calling for new information from less studied ancient cratonic nuclei.Here,we present U-Pb ages and Hf isotopic compositions of detrital zircon grains from^2.9 Ga old quartzites and magmatic zircon from a 3.505 Ga old dacite from the Iron Ore Group of the Singhbhum craton,eastern India.The detrital zircon grains range in age between 3.95 Ga and 2.91 Ga.Together with the recently reported Hadean,Eoarchean xenocrystic(up to 4.24 Ga)and modem detritus zircon grains from the Singhbhum craton,our results suggest that the Eoarchean detrital zircons represent crust generated by recycling of Hadean felsic crust formed at^4.3-4.2 Ga and^3.95 Ga.We observe a prominent shift in Hf isotope compositions at^3.6-3.5 Ga towards super-chondritic values,which signify an increased role for depleted mantle and the relevance of plate tectonics.The Paleo-,Mesoarchean zircon Hf isotopic record in the craton indicates crust generation involving the role of both depleted and enriched mantle sources.We infer a short-lived suprasubduction setting around^3.6-3.5 Ga followed by mantle plume activity during the Paleo-,Mesoarchean crust formation in the Singhbhum craton.The Singhbhum craton provides an additional repository for Earth’s oldest materials.  相似文献   

9.
Detrital iron deposits (DID) are located adjacent to the Precambrian bedded iron deposit (BID) of Joda near the eastern limb of the horseshoe-shaped synclinorium, in the Bonai–Keonjhar belt of Orissa. The detrital ores overlie the Dhanjori Group sandstone as two isolated orebodies (Chamakpur and Inganjharan) near the eastern and western banks of the Baitarani River, respectively. The DID occur as pebble/cobble conglomerates containing iron-rich clasts cemented by goethite. Mineralogy, chemistry and lamination of these clasts are similar to that found in the nearby BID ores. Enrichment of trace and rare-earth elements in the DID relative to the BID is attributed to their concentration during the precipitation of cementing material. The detrital iron orebodies formed when Proterozoic weathering processes eroded pre-existing BID outcrops located on the Joda Ranges, and the resulting detritus accumulated in the paleochannels. In situ dissolution in association with abundant organic material produced Fe-saturated groundwater, which re-precipitated as goethite within the aggraded channel to cement the detritals. Growth of microplaty hematite in the goethite matrix suggests some level of subsequent burial metamorphism.  相似文献   

10.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

11.
《International Geology Review》2012,54(13):1673-1690
ABSTRACT

Economically the most important iron deposits of Turkey occur as: (1) skarn-hosted (SH)-type ore deposits, occurring along the contacts between syenitic-monzonitic intrusives and limestone or serpentine; (2) vein-type deposits, found between the serpentine and limestone (SLH); or (3) ore deposits that are entirely within the limestone (LH).

Elemental associations are defined as: Fe+Ni+Cr+U+Bi+Rb+Mg+Ga for the SH-type ores; Fe+Cr+Mn+Nb+V for the SLH-type ores; and Fe+Ag+Au+Cr+Ba+As+Pb+Sb+Ni for the LH-type ores. Positive correlations between Fe, U, Bi, and Rb for the SH type indicate that late magmatic hydrothermal input was related to monzonitic intrusions. Chondrite-normalized rare earth element (REE) patterns of the 14 deposits show very weak light/heavy REE (LREE/HREE) fractionation. Similarities of REE patterns, particularly between the SH and LH types, may indicate a common source of REEs and Fe. Ce depletion in the LH ores indicates long-term fluid flow and interaction with marine sediments. Ni, Cr, and V enrichment of all deposits indicates that iron was scavenged from the serpentinized ultra-basic-basic rocks and transported along fracture zones by hydrothermal solutions driven by intrusions. The iron deposits were formed around the magmatic bodies, or tectonic contacts between the serpentine and the limestone.  相似文献   

12.
The major Gushan iron oxide deposit, typical of the Middle‐Lower Yangtze River Valley, is located in the eastern Yangtze craton. Such deposits are generally considered to be genetically related to Yanshanian subvolcanic‐volcanic rocks and are temporally‐spatially associated with ca. 129.3–137.5 Ma dioritic porphyries. The latter have a very narrow 87Sr/86Sr range of 0.7064 to 0.7066 and low ?Nd(t) values of ?5.8 to ?5.7, suggesting that the porphyries were produced by mantle‐derived magmas that were crustally contaminated during magma ascent. The ore bodies occur mainly along the contact zone between dioritic porphyries and the sedimentary country rocks. The most important ore types are massive and brecciated ores which together make up 90 vol.‐% of the deposit. The massive type generally occurs as large veins consisting predominantly of magnetite (hematite) with minor apatite. The brecciated type is characterized by angular fragments of wall‐rocks that are cemented by fine‐grained magnetite. Stockwork iron ores occur as irregular veins and networks, especially with pectinate structure; they are composed of low‐temperature minerals (e.g. calcite), which indicate a hydrothermal process. The similar rare earth element patterns of apatite from the massive ores, brecciated ores and the porphyries, coupled with high‐temperature fluids (1000°C) suggest that they are magmatic in origin. Furthermore, melt flow structure commonly developed in massive ores and the absence of silicate minerals and cumulate textures suggest that the iron ores formed by the separation of an immiscible oxide melt from the silicate melt rather than by crystal fractionation. Combined with theoretical and experimental studies, we propose that the introduction of phosphorus due to crustal contamination during mantle‐derived magma ascent could have been a crucial factor that led to the formation of an immiscible oxide melt from the silicate magma.  相似文献   

13.
韩宁  江思宏  白大明  陈春良  刘源 《地质通报》2015,34(06):1086-1099
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:①深成—表生矿床;②表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。  相似文献   

14.
韩宁  江思宏  白大明  陈春良  刘源 《地质通报》2015,34(6):1086-1099
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:1深成—表生矿床;2表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。  相似文献   

15.
安徽霍邱铁矿是一个大型BIF铁矿田,矿体均赋存于一套晚太古代中高级变质作用的含铁建造,为南北向海槽条带状硅铁建造,大地构造位置位于嵩箕-砀山古陆核南缘东西向凹陷区。主要矿体自下而上可分为A+B矿带和D矿带:前者为变粒岩-片岩-磁铁石英岩建造;后者为片岩-大理岩-赤铁(镜)铁石英岩建造。本文对该矿田的地质背景、矿体赋存条件、构造型式进行深入分析,推测矿区周边及深部构造与控矿因素,综合相关地质情况,我们推测其周边还可能存在新的隐伏矿床,该研究对霍邱铁矿的外围成矿规律研究与找矿预测具有参考价值。  相似文献   

16.
Enrichment iron ore of the Hamersley Province, currently estimated at a resource of over 40 billion tonnes (Gt), mainly consists of BIF (banded iron-formation)-hosted bedded iron deposits (BID) and channel iron deposits (CID), with only minor detrital iron deposits (DID). The Hamersley BID comprises two major ore types: the dominant supergene martite–goethite (M-G) ores (Mesozoic–Paleocene) and the premium martite–microplaty hematite ores (M-mplH; ca 2.0 Ga) with their various subtypes. The supergene M-G ores are not common outside Australia, whereas the M-mplH ores are the principal worldwide resource. There are two current dominant genetic models for the Hamersley BID. In the earlier 1980–1985 model, supergene M-G ores formed in the Paleoproterozoic well below normal atmospheric access, driven by seasonal oxidising electrochemical reactions in the vadose zone of the parent BIF (cathode) linked through conducting magnetite horizons to the deep reacting zone (anode). Proterozoic regional metamorphism/diagenesis at ~80–100°C of these M-G ores formed mplH from the matrix goethite in the local hydrothermal environment of its own exhaled water to produce M-mplH ores with residual goethite. Following general exposure by erosion in the Cretaceous–Paleocene when a major second phase of M-G ores formed, ground water leaching of residual goethite from the metamorphosed Proterozoic ores resulted in the mainly goethite-free M-mplH ores of Mt Whaleback and Mt Tom Price. Residual goethite is common in the Paraburdoo M-mplH-goethite ores where erratic remnants of Paleoproterozoic cover indicate more recent exposure.

Deep unweathered BIF alteration residuals in two small areas of the Mt Tom Price M-mplH deposits have been used since 1999 for new hypogene–supergene modelling of the M-mplH ores. These models involve a major Paleoproterozoic hydrothermal stage in which alkaline solutions from the underlying Wittenoom Formation dolomite traversed the Southern Batter Fault to leach matrix silica from the BIF, adding siderite and apatite to produce a magnetite–siderite–apatite ‘protore.’ A later heated meteoric solution stage oxidised siderite to mplH + ankerite and magnetite to martite. Weathering finally removed residual carbonates and apatite leaving the high-grade porous M-mplH ore. Further concepts for the Mt Tom Price North and the Southern Ridge Deposits involving acid solutions followed, but these have been modified to return essentially to the earlier hypogene–supergene model. Textural data from erratic ‘metasomatic BIF’ zones associated with the above deposits are unlike those of the typical martite–microplaty hematite ore bodies. The destiny of the massive volumes of dissolved silica gangue and the absence of massive silica aureoles has not been explained. Petrographic and other evidence indicate the Mt Tom Price metasomatism is a localised post-ore phenomenon. Exothermic oxidation reactions in the associated pyrite-rich black shales during post-ore removal by groundwater of remnant goethite in the ores may have resulted in this very localised and erratic hydrothermal alteration of BIF and its immediately associated pre-existing ore.  相似文献   

17.
孙维安  袁峰  邓宇峰  刘光贤  杨迪  李现锁  傅斌 《岩石学报》2017,33(11):3559-3580
钟姑矿田位于宁芜盆地南部,受矿田内格状构造控制产出一系列早白垩世(129~132Ma)闪长岩及二长岩类侵入体,与铁矿床的形成密切相关,而区域内成矿岩体的研究尤其是岩浆岩的起源和演化有待进一步探讨。本次工作以矿田内的姑山辉石闪长玢岩、龙山辉石闪长岩、白象山闪长岩、钟九闪长岩和太平山二长岩等与铁成矿有关的岩体为研究对象,开展LA-ICP-MS原位锆石Hf同位素和SHRIMP原位O同位素研究。结果显示,钟姑矿田各成矿岩体具有较一致的锆石Hf-O同位素组成,~(176)Hf/~(177)Hf值为0.282425~0.282695,εHf(t)值为-12.3~-3.9,tDM2范围在1.26~1.86Ga;锆石δ18O集中于3.34‰~8.05‰,捕获锆石的176Hf/177Hf比值为0.282324~0.282487,εHf(t)=-15.8~-10.1,锆石tDM2年龄在1.72~20.8Ga之间,锆石δ~(18)O相对集中于5.90‰~6.51‰。钟姑矿田岩浆岩起源于富集的岩石圈地幔,同位素特征指示其携带板块俯冲和蚀变洋壳信息,钟姑矿田的成岩成矿作用应与伸展背景下古太平洋板块俯冲有关。与长江中下游其他矿集区岩浆岩对比研究表明,包括宁芜在内的长江中下游地区岩浆岩具有相同的地幔源区,以铁矿床为主的宁芜和庐枞盆地岩浆岩源区成分以交代岩石圈地幔为主,而以铜陵、繁昌为代表的铜多金属成矿区的岩浆岩受长江中下游新元古代基底的更多影响。  相似文献   

18.
超大型矿床是某一(或某些)矿种资源的巨大储库.据统计,全球矿产资源70%~85%的勘探储量集中分布于占全球矿床数10%的超大型矿床.由此可见发现超大型矿床对一个国家经济与社会发展的极端重要性.超大型矿床成矿背景是其形成的基础,成矿过程是其成矿的关键,勘查评价是其发现的根本途径.文章试图从成矿背景、成矿过程与勘查评价相互...  相似文献   

19.
Several iron-ore deposits hosted within Mesoarchean banded iron formations (BIFs) are mined throughout the North Pilbara Craton, Western Australia. Among these, significant goethite±martite deposits (total resources >50 Mt at 55.8 wt% Fe) are distributed in the Wodgina district within 2 km of the world-class pegmatite-hosted, tantalum Wodgina deposits. In this study, we investigate the dominant controls on iron mineralisation at Wodgina and test the potential role of felsic magma-derived fluids in early alteration and upgrade of nearby BIF units. Camp-scale distribution and geochemistry of iron ore at Wodgina argue against any significant influence of identified felsic intrusions in the upgrade of BIF. Whereas, the formation of BIF-hosted goethite±martite iron ore at Wodgina involves: (i) early (ca 2950 Ma) metamorphism of BIF causing camp-scale recrystallisation of pre-existing iron oxides to form euhedral magnetite, with local enrichment to sub-economic grades (~40 wt% Fe) within or proximal to metre-wide, bedding-parallel shear zones, and (ii) later supergene lateritic enrichment of the magnetite-bearing BIF and shear zones, forming near-surface goethite±martite ore. The supergene alteration sequence includes: (i) downward progression of the oxidation front and replacement of magnetite by martite, (ii) local development of silcrete at ~40 m below the modern surface caused by the lowering of the water-table, (iii) intensive replacement of quartz by goethite, resulting in the goethite±martite ore bodies at Wodgina, and (iv) late formation of ferricrete and ochreous goethite. Goethitisation most likely took place within the hot and very wet climate that prevailed from the Paleocene to the mid-Eocene. Goethite precipitation was accompanied by the incorporation of trace elements P, Zn, As, Ni and Co, which were likely derived from supergene fluid interaction with nearby shales. Enrichment of these elements in goethite-rich ore indicates that they are potentially useful pathfinder elements for concealed ore bodies covered by trace element-depleted pedogenic silcrete and siliciclastic rocks located throughout the Wodgina mine.  相似文献   

20.
文章基于岩石力学及分形统计分析,结合野外地质调查,探讨了扩容构造控矿机制及其在福建马坑铁矿床成矿过程中的作用。指出马坑铁矿床成矿过程与构造变形作用造成的扩容机制密切相关,其中,锯齿状断裂扩容构造及流体超压作用扩容是马坑铁矿床除接触交代作用外成矿的关键因素。锯齿状断裂扩容构造形成于伸展剪切作用,造成矿体沿倾向的尖灭再现。成矿流体超压扩容主要是由于流体沸腾作用引起,使岩石发生角砾岩化,其中大规模角砾岩是矿体的有利赋存部位。福建马坑矿区深部及外围找矿,应重点关注大规模高强度的汇流扩容区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号