首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Two impulsive limb coronal mass ejections (CMEs), one of which was accompanied by an active prominence and the other by a flare, are analyzed using AIA/SDO solar data. The analysis leads to the conclusion that, in both cases, the sources of the CME formation were magnetic tubes rising from beneath the photosphere at high velocity. One or more arch structures can be located in the path of the magnetic tube, which it influences and drags along with it. The arch structures may then participate in the formation of the future CME, whose main basis is the magnetic tube itself.  相似文献   

2.
We have begun an investigation of the possible origins of considerable of powerful solar flares. This effect is manifest, first and foremost, in the existence of high-temperature plasma in flare loops over many hours. Analysis of the soft X-ray emission in two energy bands detected by the GOES satellites for about 20 powerful solar flares reveals long time intervals during the decay phase when the source temperature decreases, in general, exponentially. The characteristic time t i for a decrease in the temperature by a factor of ten is 3–10 hours for most powerful events. In addition, another interval of very slow decrease with a characteristic time t i of tens of hours can be identified in some cases. We found a gradual change in the dependence of the temperature on the square root of the emission measure for the source as a whole, which characterizes the transition from purely coronal processes to powerful flares with a prolonged inflow of plasma from the chromosphere. Modeling the energy balance in a loop can yield the requirements for the source of plasma heating in a long-lived arch system. A necessary condition for the development of prolonged flares seems to be a powerful coronal mass ejection, which initiates the formation of a source of plasma heating at coronal heights. Our analysis shows that a considerable fraction of the energy is often released in the region of the cusp, and that systems of giant coronal arches rising to heights of about 100 000 km above the limb are formed in most prolonged events (called dynamical flares in the terminology of Svestka).  相似文献   

3.
Large-scale solar disturbances associated with powerful flares and coronal mass ejections (CMEs) during two passages of a grand system of three active regions in October–November 2003 are analyzed using data obtained with the SOHO/EIT EUV telescope. Dimmings (transient coronal holes) and, to a lesser extent, coronal waves (traveling emitting fronts) are studied using fixed-difference derotated images, in which a correction for the solar rotation is applied and a single heliogram preceding the event is subtracted from all subsequent heliograms. This method allows us to study difference heliograms in both the 195 Å line (with an interval of 12 min) and the various-temperature channels of 171, 195, 284, and 304 Å (with an interval of six hours). Our analysis shows, in particular, that the disturbances associated with CMEs demonstrated a global character and occupied almost the entire southern half of the disk in virtually all eruptive events during the two solar rotations. At the same time, the northern half of the disk, which had a large coronal hole, was only slightly disturbed. The dominant dimmings were observed on the disk as narrow, long features stretched mainly between three main, well-separated regions of the system and as long structures located along lines of solar latitude in the south polar sector. For repetitive events with intervals between them being not so long, the dominant dimmings demonstrated a clear homology in their forms and locations. During the very powerful event of October 28, one homologous global set of dimmings changed to another set. Many dimmings were observed to be identical or very similar in the three coronal channels and the transition-region line. It follows from the analysis that rapidly recovering global structures in the corona and transition region were involved in the eruption of running CMEs and the corresponding reconstruction of the large-scale magnetic fields.  相似文献   

4.
A detailed study of two major solar flares that occurred in Group 10786 at the time of its disappearance behind the western limb is presented. The flares of July 14, 2005 were previously studied fairly poorly, as no RHESSI hard X-ray observations were available for themaxima of the twomost powerful of these flares. Observations carried out using the HEND equipment (on the Mars Odyssey spacecraft) developed at the Institute for Space Research in Moscow are used here to fill this gap. In the first flare, an intense, impulsive burst occurred at 07:23 UT, about 1.5 h after the onset of a weak, prolonged event. While processes in the neighborhood of the northern spot dominated in the flares of July 5–9, a powerful impulsive energy release on July 14 emerged when the flare process that originated in the North reached the southern spot. Our analysis of the flare activity of this medium-sized group reveals a gradual enhancement of the flare activity and a strong interaction between the acceleration above the magnetic-field neutral line and in the immediate vicinity of the spots. At the time of the culmination of the flare activity in the group on July 13 and 14, the pattern of nonstationary processes changes: fast coronal mass ejections form after a series of impulsive energy-release events. Spacecraft observations of the burst of July 14 after 11 UT at points separated in longitude (on RHESSI and Mars Odyssey) revealed clear anisotropy of the flare emission at energies exceeding 80 keV.  相似文献   

5.
A new type of dimmings, or transient coronal holes (i.e., regions of reduced soft-X-ray and EUV emission), is revealed in analyses of difference solar images obtained with the SOHO EIT ultraviolet telescope at 195 Å. Such features can be observed on the solar disk after halo-type coronal mass ejections (CMEs). If several active regions, filaments, and other structures are present on the disk during a major eruptive event, then strongly anisotropic, channel-shaped (“channeled”) dimmings coexist with relatively compact dimmings adjacent to the eruption center. The channeled dimmings are comparable to the compact dimmings in terms of their contrast; stretch along several narrow, extended features (channels); and can span nearly the entire visible disk. Coronal waves, which appear as fronts of enhanced brightness traveling ahead of the dimmings in some halo CME events, are also anisotropic. We argue that such transient phenomena are closely related to the strong disturbance and restructuring of large-scale magnetic fields involved in CMEs, and the channeled character of the dimmings reflects the complexity of the global solar magnetosphere, in particular, near the solar-activity maximum.  相似文献   

6.
We review high spatial resolution microwave observations of solar active regions, coronal loops and flares. Observations of preflare active regions are presented; in particular we discuss the interpretations of reversal of polarization at the flare site and the role of newly emerging flux in triggering the onset of flares. We discuss the spatial locations of microwave burst emitting regions; loops or arcades of loops appear to be the sites of flare energy release in microwave bursts. We provide direct observational evidence of magnetic reconnection as the primary cause of acceleration of electrons in microwave bursts.  相似文献   

7.
Soft X-ray data for prolonged flares in subgiants in RS CVn binary systems and some other active late-type stars (AB Dor, Algol) are analyzed. During these nonstationary events, a large amount of hot plasma with temperatures exceeding 108 K exists for many hours. Numerical simulations of gas-dynamical processes in the X-ray source—giant loops—can yield reliable estimates of the plasma parameters and flare-source size. This confirms that such phenomena exist while considerable energy is supplied to the top part of a giant loop or system of loops. Refined estimates of the flare energy (up to 1037 erg) and scales contradict the widely accepted idea that prolonged X-ray flares are associated with the evolution of local magnetic fields. The energy of the current component of the large-scale magnetic field arising during the ejection of magnetic field by plasma jets or stellar wind is estimated. Two cases are considered: a global stellar field and fields connecting regions with oppositely directed unipolar magnetic fields. The inferred energy of the current component of the magnetic field associated with distortion of the initial MHD configuration is close to the total flare energy, suggesting that large-scale magnetic fields play an important role in prolonged flares. The flare process encompasses some portion of a streamer belt and may propagate along the entire magnetic equator of the star during the most powerful prolonged events.  相似文献   

8.
The event of September 12, 1999 is used to analyze large-scale disturbances associated with coronal mass ejections during the eruption of filaments outside active regions. The analysis is based on Hα filtergrams, EUV and soft X-ray images, and coronograph data. The filament eruption occurred in relatively weak magnetic fields, but was accompanied by larger-scale phenomena than flare events. During several hours after the eruption, a large-scale arcade developed, whose bases formed diverging flare-like ribbons. The volume of the event was bounded by an “EIT wave”, which was quasi-stationary at the solar surface and expanded above the limb. The event did not have an impulsive component; therefore the “EIT wave” above the limb was a magnetic structure, identified as the front of a coronal mass ejection by virtue of its shape, structural features, and kinematics. Three types of dimmings were observed within the areal of the event, cause by (a) the evacuation of plasma, (b) heating of plasma with its subsequent evacuation, and (c) the absorption of radiation in a system of filaments activated by the eruption. The fact that a dimming appeared due to plasma heating was revealed by its presence in soft X-rays, whereas the four EIT channels did not demonstrate this. This brings into question the correctness of certain conclusions drawn earlier based purely on EIT data. A transformation of magnetic fields brought about by the eruption also occurred in a stationary coronal hole adjacent to the areal of the event. The expansion of the coronal mass ejection was self-similar and characterized by a rapidly decreasing acceleration, which is not taken into account in the widely used polynomial approximation.  相似文献   

9.
蓬勃发展的空间天气学   总被引:2,自引:0,他引:2       下载免费PDF全文
方成 《第四纪研究》2002,22(6):497-499
日地空间环境是人类生存发展的重要场所,太阳剧烈活动引起日地空间短时间尺度的变化,对人类社会带来严重影响和危害。本文简要介绍了空间天气学产生的背景和迅速发展的社会需求,当今国际合作研究的重大计划和进展,以及空间天气学研究的未来和展望。  相似文献   

10.
Solar flares with long X-ray decays (Long-Decay Flars, LDF) are studied. X-ray and radio observations can be used to trace the active phase of an LDF and the subsequent development of a system of giant coronal loops. The energy balance in a giant loop is modeled for the events of January 24, 1992 (an elementary LDF, considered earlier), November 2, 1991, and March 15, 1993; the modeling shows that energy flow into the loop over the entire life time of the LDF is necessary to account for the duration of the events. The total energy of the LDF was confined within rather narrow limits and was comparable to the energy of major impulsive flares. The results are consistent with the concept (developed in connection with Yohkoh observations) that an LDF in a posteruptive process results in magnetic reconnection in a vertical current sheet, with the subsequent formation of new loops and their specific evolution.  相似文献   

11.
Solar filtergrams obtained at the Crimean Astrophysical Observatory at the center and wings of the H?? line are used to study variations in filaments, in particular, in arch filament systems (AFSs). These are considered as an indicator of emerging new magnetic flux, providing information about the spatial locations of magnetic-field elements. Magnetic-field maps for the active region NOAA 10030 are analyzed as an example. A method developed earlier for detecting elements of emerging flux using SOHO/MDI magnetograms indicates a close link between the increase in flare activity in theNOAA 10030 group during July 14?C18, 2002 and variations in the topological disconnectedness of the magnetograms. Moreover, variations in the flare activity one day before a flare event are correlated with variations in the topological complexity of the field (the Euler characteristic) in regions with high field strengths (more than 700 G). Analysis of multi-wavelength polarization observations on the RATAN-600 radio telescope during July 13?C17, 2002 indicate dominance of the radio emission above the central spot associated with the increase in flare activity. In addition to the flare site near the large spot in the group, numerous weak flares developed along an extended local neutral line, far from the central line of the large-scale field. The statistical characteristics of the magnetic-field maps analyzed were determined, and show flare activity of both types, i.e., localized in spot penumbras and above the neutral line of the field.  相似文献   

12.
We analyze large-scale solar activity following the eruption of a very powerful, geoeffective coronal mass ejection in the 23rd solar cycle, observed at 175, 284, and 304 Å on November 4, 2001, using data from the CORONAS-F/SPIRIT telescope. In particular, we have shown that the restructuring of the magnetic field above the eruption center was accompanied by the formation of a multicomponent post-eruptive arcade, which was observed in all three bands over many hours and had an extent of the order of 0.5R. Two kinds of dimmings were observed, i.e., compact dimmings on either side of this arcade and channeled dimmings along some extended features beyond the active region. The intensity in the dimmings decreased by several tens of percent. The enhanced emission observed at the top of the post-eruptive arcade can be due to energy release in the course of magnetic reconnection high in the corona at the relaxation stage of the perturbed magnetic field to a new equilibrium state with a closed configuration. It can also be due to an enhanced emission measure because of the oblique direction of the line of sight crossing both loop tops and footpoint regions. The spatial coincidence of the main dimmings in lines corresponding to different temperatures indicates that a plasma outflow from the transition region and coronal structures with opened field lines are responsible for these dimmings. Variations in the plasma temperature associated with coronal mass ejections probably play an important role for some dimmings, which appear different in different lines.  相似文献   

13.
Data obtained with the EIT UV telescope and LASCO coronagraph of the SOHO satellite are used to analyze large-scale solar disturbances associated with a series of major flares and coronal mass ejections that occurred in the late decline phase of cycle 23, on November 3–10, 2004, and gave rise to strong geomagnetic storms. Derotated fixed-base difference heliograms taken in the 195 Å coronal channel at 12-min intervals and in the various-temperature 171, 195, 284, and 304 Å channels at 6-h intervals indicate that these disturbances were global and homologous; i.e., they had similar characteristics and affected the same structures. Almost all of the nine events of this series included two recurrent systems of large-scale dimmings (regions of reduced intensity with lifetimes of 10–15 h): (a) transequatorial dimmings connecting a northern near-equatorial eruption center with a southern active region and (b) northern dimmings covering a large sector between two coronal holes. In this northern sector, coronal waves (brightenings propagated from the eruption center at speeds of several hundred km/s) were observed ahead of the expanding dimmings. The brightest, central part of the halo-type coronal mass ejection in each event corresponded to the northern dimming system. The properties of the dimmings and coronal waves and the relationship between them are discussed on the basis of the results obtained. We find that the eruption of large coronal mass ejections involves structures of the global solar magnetosphere with spatial scales far exceeding the sizes of active regions and normal activity complexes.  相似文献   

14.
Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.  相似文献   

15.
Using the Irkutsk Incoherent Scattering Radar, it is demonstrated that the high sensitivity of such radars, which are usually used for studies of the Earth’s ionosphere, also enables their use in a passive mode for observations of astronomical radio sources. Observations of solar flares accompanied by coronal mass ejections and of quasi-stationary radio sources on the Sun have been carried out. In addition, scintillations of several of the brightest discrete radio sources (Cygnus A, Cassiopeia A, and the Crab Nebula) have been studied over several months. These data can also be useful for studies of the ionosphere and interplanetary space.  相似文献   

16.
SOHO/EIT data are used to analyze dimmings, or transient coronal holes (regions of reduced soft-X-ray and EUV emission), which are observed on the solar disk after halo-type coronal mass ejections (CMEs). Simultaneous observations in the 171 Å FeIX/X, 195 Å FeXII, and 284 Å FeIX coronal lines, which are sensitive to temperatures of T e ≈1.2, 1.5, and 2.0 MK, respectively, are considered, together with the 304 Å HeII transition-region line (T e ≈(0.02–0.08) MK). Difference images taken at intervals of six and twelve hours and compensated for solar rotation indicate that dimmings are normally strongly pronounced and have similar large-scale structures in the moderate-excitation-temperature 171 Å and 195 Å coronal lines, while the higher-temperature 284 Å line mainly display the deepest portions of the dimmings. In addition, clear dimmings with relatively small areas are visible in the 304 Å transition-region line during many CMEs, in particular, in regions adjacent to the source of the eruption. Moreover, dimmings in the transition region without coronal counterparts are observed during some events. These results suggest that the opening of magnetic-field lines and the resulting density reduction that occur during a CME can also involve cold plasma of the transition region. In addition, the effects of temperature variations cannot be ruled out for some dimming structures.  相似文献   

17.
Powerful solar flares contain one or more impulsive events, plasma ejection, and the subsequent development of gigant post-eruptive loops. In the middle of the 1980s, Jakimiec proposed an analysis of the flare loops based on log T-1/2log EM diagrams constructed from the observed soft X-rays (the so-called Jakimiec model). We have used this method to construct and analyze these diagrams not for various arbitrary events, but instead for similar flares within a single center of activity; in other words, for homological flares (two-ribbon flares observed in November 2000, powerful prolonged events observed in October–November 2003, etc.). This eliminated the effect of differences in the magnetic configurations, enabling us to find a new relationship: the slope (tan α) of the logT-1/2log EM line during the flare decay depends on the maximum temperature T max at the source of the soft X-rays. The dependence of tan α on T max gradually evolves from a series of short flares to a series of powerful, prolonged, nonstationary processes. Our results support the idea that the development of post-eruptive loops depends on the energy of the impulsive events for the phenomenon as a whole. Explosive evaporation simultaneously increases both the temperature and the density of the plasma at the loop top. The subsequent evolution of the post-eruptive formations depends on the difference in the initial conditions and on the degree of opening of the magnetic configuration. The importance of our analysis for the duration of flares and differences between dimmings is briefly discussed.  相似文献   

18.
The evolution of large solar activity centers is studied, and the conditions resulting in powerful nonstationary processes are clarified. In addition to the factors that are usually considered (changes in sunspot area, the structure of magnetic fields, the character of motions), we examine to what extent observations of nonstationary processes (flares and associated coronal mass ejections) can be used to predict the development of such processes in the subsequent evolution of the activity center. We considered the example of a powerful group in October 2003, which could be observed before its appearance at the eastern limb using a spacecraft in near-Mars orbit. We plotted for events occurring in 2003 images of flares in various spectral ranges and analyzed high-energy processes in group 486, which was isolated at the beginning of its development, and then in the interrelated groups 486 and 484. The analysis of the peculiar early development of group 486 suggested that an intensification of the activity could be expected due to the emergence of new magnetic flux (and satellite groups), as well as the interaction and synchronization of two and then three large groups of the end of October 2003. In other words, in this case, extremely powerful nonstationary processes are associated with a relatively higher contribution of large-scale magnetic fields. We compare our results to analyses of motions and magnetic fields in this activity center throughout its transit across the disk from October 23 to November 5, 2003.  相似文献   

19.
Multi-wavelength observations and magnetic-field data for the solar flare of May 10, 2012 (04: 18 UT) are analyzed. A sign change in the line-of-sight magnetic field in the umbra of a small spot has been detected. This is at least partly associated with the emergence of a new magnetic field. A hard X-ray flare was recorded at almost the same time, and a “sunquake” was generated by the impact of the disturbance in the range of energy release on the photosphere. A sigmoid flare was recorded at the beginning of the event, but did not spread, as it usually does, along the polarity inversion (neutral) line. SDO/HMI full vectormagnetic-fieldmeasurements are used to extrapolate the magnetic field of AR 11476 into the corona, and to derive the distribution of vertical currents jz in the photosphere. The relationship between the distribution of currents in the active region and the occurrence of flares is quite complex. The expected “ideal” behavior of the current system before and after the flare (e.g., described by Sharykin and Kosovichev) is observed only in the sigmoid region. The results obtained are compared with observations of two other flares recorded in this active region on the same day, one similar to the discussed flare and the other different. The results confirm that the formation and eruption of large-scale magnetic flux ropes in sigmoid flares is associated with shear motions in the photosphere, the emergence of twisted magnetic tubes, and the subsequent development of the torus instability.  相似文献   

20.
Studies of the extreme solar proton event of January 20, 2005 intensified the contest over of a long-standing problem: are solar cosmic rays arriving at the Earth accelerated by solar flares or by shocks preceding rapidly moving coronal mass ejections? Among the most important questions is the relationship between the energy spectra of the solar cosmic rays and the frequency spectra of flare microwave bursts. Some studies of previous solar-activity cycles have shown that such a relationship does exist, in particular, for protons with energies of tens of MeV. The present work analyzes this relation using data for 1987–2008. For flare events observed in the western half of the disk, there is a significant correlation between the index δ, which is equivalent to the power-law index of the integrated energy spectrum of 10–100 MeV protons detected near the Earth’s orbit, and radio burst parameters such as a ratio of peak fluxes S at two frequencies (for example, at 9 and 15 GHz) and a microwave peak frequency f m . Proton fluxes with hard (flat) energy spectra (δ ≤ 1.5) correspond to hard microwave frequency spectra (S 9/S 15 ≤ 1 and f m ≥ 15 GHz), while flares with soft radio spectra (S 9/S 15 ≥ 1.5 and f m ≤ 5 GHz) result in proton fluxes with soft (steep) energy spectra (δ ≥ 1.5–2). It is also shown that powerful high-frequency bursts with the hardest radio spectra (f m ≈ 30 GHz) can point at acceleration of significant proton fluxes in flares occurring in strong magnetic fields. These results argue that solar cosmic rays (or at least their initial impulses) are mainly accelerated in flares associated with impulsive and post-eruptive energy release, rather than in shocks driven by coronal mass ejections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号