首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a framework for the seismic risk assessment of water supply networks, operating in either normal or abnormal conditions. We propose a methodology for assessing the reliability of water pipe networks combining data of past non‐seismic damage and the vulnerability of the network components against seismic loading. Historical data are obtained using records of damages that occur on a daily basis throughout the network and are processed to produce‘survival curves’, depicting their estimated survival rate over time. The fragility of the network components is assessed using the approach suggested in the American Lifelines Alliance guidelines. The network reliability is assessed using graph theory, whereas the system network reliability is calculated using Monte Carlo simulation. The methodology proposed is demonstrated both on a simple, small‐scale, network and also on a real‐scale district metered area from the water network of the city of Limassol, Cyprus. The proposed approach allows the estimation of the probability that the network fails to provide the desired level of service and allows the prioritization of retrofit interventions and of capacity‐upgrade actions pertaining to existing water pipe networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A performance-based adaptive methodology for the seismic assessment of highway bridges is proposed. The proposed methodology is based on an Inverse (I), Adaptive (A) application of the Capacity Spectrum Method (CSM), with the capacity curve of the bridge derived through a Displacement-based Adaptive Pushover (DAP) analysis. For this reason, the acronym IACSM is used to identify the proposed methodology. A number of Performance Levels (PLs), for which the seismic vulnerability and seismic risk of the bridge shall be evaluated, are identified. Each PL is associated to a number of Damage States (DSs) of the critical members of the bridge (piers, abutments, joints and bearing devices). The IACSM provides the earthquake intensity level (PGA) corresponding to the attainment of the selected DSs, using over-damped elastic response spectra as demand curves. The seismic vulnerability of the bridge is described by means of fragility curves, derived based on the PGA values associated to each DS. The seismic risk of the bridge is evaluated as convolution integral of the product between the fragility curves and the seismic hazard curve of the bridge site. In this paper, the key aspects and basic assumptions of the proposed methodology are presented first. The IACSM is then applied to nine existing simply supported deck bridges, characterized by different types of piers and bearing devices. Finally, the IACSM predictions are compared with the results of nonlinear response time-history analysis, carried out using a set of seven ground motions scaled to the expected PGA values.  相似文献   

4.
Shang  Qingxue  Guo  Xiaodong  Li  Quanwang  Xu  Zhen  Xie  Linlin  Liu  Chaofeng  Li  Jichao  Wang  Tao 《地震工程与工程振动(英文版)》2020,19(4):811-826

The concept of seismic resilience has received significant attention from academia and industry during the last two decades. Different frameworks have been proposed for seismic resilience assessment of engineering systems at different scales (e.g., buildings, bridges, communities, and cities). Testbeds including Centerville virtual community (CVC), Memphis testbed (MTB), and the virtual city of Turin, Italy (VC-TI) have been developed during the last decade. However, the resilience assessment results of Chinese cities still require calibration based on a unified evaluation model. Therefore, a geographic information system (GIS)-based benchmark model of a medium-sized city located in the southeastern coastal region of China was developed. The benchmark city can be used to compare existing assessment frameworks and calibrate the assessment results. The demographics, site conditions, and potential hazard exposure of the benchmark city, as well as land use and building inventory are described in this paper. Data of lifeline systems are provided, including power, transportation, water, drainage, and natural gas distribution networks, as well as the locations of hospitals, emergency shelters, and schools. Data from past earthquakes and the literature were obtained to develop seismic fragility models, consequence models, and recovery models, which can be used as basic data or calibration data in the resilience assessment process. To demonstrate the completeness of the data included in the benchmark city, a case study on the accessibility of emergency rescue after earthquakes was conducted, and the preliminary results were discussed. The ultimate goal of this benchmark city is to provide a platform for calibrating resilience assessment results and to facilitate the development of resilient cities in China.

  相似文献   

5.
A framework for the generation of bridge-specific fragility curves utilizing the capabilities of machine learning and stripe-based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.  相似文献   

6.
Probabilistic seismic risk assessment for spatially distributed lifelines is less straightforward than for individual structures. While procedures such as the ‘PEER framework’ have been developed for risk assessment of individual structures, these are not easily applicable to distributed lifeline systems, due to difficulties in describing ground‐motion intensity (e.g. spectral acceleration) over a region (in contrast to ground‐motion intensity at a single site, which is easily quantified using Probabilistic Seismic Hazard Analysis), and since the link between the ground‐motion intensities and lifeline performance is usually not available in closed form. As a result, Monte Carlo simulation (MCS) and its variants are well suited for characterizing ground motions and computing resulting losses to lifelines. This paper proposes a simulation‐based framework for developing a small but stochastically representative catalog of earthquake ground‐motion intensity maps that can be used for lifeline risk assessment. In this framework, Importance Sampling is used to preferentially sample ‘important’ ground‐motion intensity maps, and K‐Means Clustering is used to identify and combine redundant maps in order to obtain a small catalog. The effects of sampling and clustering are accounted for through a weighting on each remaining map, so that the resulting catalog is still a probabilistically correct representation. The feasibility of the proposed simulation framework is illustrated by using it to assess the seismic risk of a simplified model of the San Francisco Bay Area transportation network. A catalog of just 150 intensity maps is generated to represent hazard at 1038 sites from 10 regional fault segments causing earthquakes with magnitudes between five and eight. The risk estimates obtained using these maps are consistent with those obtained using conventional MCS utilizing many orders of magnitudes more ground‐motion intensity maps. Therefore, the proposed technique can be used to drastically reduce the computational expense of a simulation‐based risk assessment, without compromising the accuracy of the risk estimates. This will facilitate computationally intensive risk analysis of systems such as transportation networks. Finally, the study shows that the uncertainties in the ground‐motion intensities and the spatial correlations between ground‐motion intensities at various sites must be modeled in order to obtain unbiased estimates of lifeline risk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
基于粤港澳大湾区地震灾害风险评估的初步成果,分析了湾区城市群地震环境、承灾体分布和场地特点,提出了两种确定地震输入的设定地震原则,即潜在震源区设定地震原则和最大风险设定地震原则,按照这两种原则可以更加准确地进行城市群地震灾害风险评估。在前人工作的基础上,提出了考虑场地条件影响的地震灾害风险表达式,探索了适合三维模拟非一致激励地震动输入的建筑物和生命线工程灾害风险评估方法,提出了建筑物和生命线工程灾害风险评估中考虑场地影响的思路,为客观地评估城市群地震灾害和损失风险提出了可参考的建议。   相似文献   

8.
Existing buildings can be at a greater seismic risk due to non-conformance to current design codes and may require structural retrofitting to improve building performance. The performance of buildings is measured in terms of immediate consequences due to direct damage, but the continuing impacts related to recovery are not considered in seismic retrofit assessment. This paper introduces a framework of retrofit selection based on the seismic resilience of deficient buildings retrofitted with the conventional mitigation approaches. The assembly-based methodology is considered for the seismic resilience assessment by compiling a nonlinear numerical model and a building performance model. The collapse fragility is developed from the capacity curve, and the resulting social, economic, and environmental consequences are determined. The seismic resilience of a building is assessed by developing a downtime assessment methodology incorporating sequence of repairs, impeding factors, and utility availability. Five functionality states are developed for the building functionality given investigated time interval, and a functionality curve for each retrofit is determined. It is concluded that seismic resilience can be used as a performance indicator to assess the continuing impacts of a hazard for the retrofit selection.  相似文献   

9.
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.  相似文献   

10.
The seismic risk evaluation usually works with a fragmented concept of risk, which depends on the scientific discipline in charge of the assessment. To achieve an effective performance of the risk management, it is necessary to define risk as the potential economic, social and environmental consequences due to a hazardous phenomenon in a period of time. This article presents a methodology which evaluates the seismic risk from a holistic perspective, which means, it takes into account the expected physical damage and also the conditions related to social fragility and lack of resilience, which favour the second order effects when a hazard event strikes an urban centre. This seeks to obtain results which are useful in the decision making process for risk reduction. The proposed method for urban seismic risk evaluation uses the fuzzy sets theory in order to handle qualitative concepts and variables involved in the assessment, the physical risk level and aggravation level, related to the social fragility and the lack of resilience, are evaluated and finally a total risk level is determinate.  相似文献   

11.
The paper illustrates a probabilistic methodology for assessing the vulnerability of existing reinforced concrete (RC) buildings with limited ductility capacity retrofitted by means of dissipative braces. The aim is to highlight the most important parameters controlling the capacity of these coupled systems and specific aspects concerning the response uncertainties. The proposed methodology is based on the use of local engineering demand parameters for monitoring the seismic response and on the development of component and system fragility curves before and after the retrofit. In the first part of the paper, the methodology is illustrated by highlighting its advantages with respect to the existing approaches. Then, its capability and effectiveness are tested by considering a benchmark two‐dimensional RC frame designed for gravity‐loads only. The frame is retrofitted by introducing elasto‐plastic dissipative braces designed for different levels of base shear capacity. The obtained results show the effectiveness of the methodology in describing the changes in the response and in the failure modalities before and after the retrofit, for different retrofit levels. Moreover, the retrofit effectiveness is evaluated by introducing proper synthetic parameters describing the fragility curves and by stressing the importance of employing local engineering demand parameters (EDPs) rather than global EDPs in the seismic risk evaluation of coupled systems consisting in low‐ductility RC frames and dissipative braces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Reliability and risk assessment of lifeline systems call for efficient methods that integrate hazard and interdependencies. Such methods are computationally challenged when the probabilistic response of systems is tied to multiple events, as performance quantification requires a large catalog of ground motions. Available methods to address this issue use catalog reductions and importance sampling. However, besides comparisons against baseline Monte Carlo trials in select cases, there is no guarantee that such methods will perform or scale well in practice. This paper proposes a new efficient method for reliability assessment of interdependent lifeline systems, termed RAILS, that considers systemic performance and is particularly effective when dealing with large catalogs of events. RAILS uses the state‐space partition method to estimate systemic reliability with theoretical bounds and, for the first time, supports cyclic interdependencies among lifeline systems. Recycling computations across an entire seismic catalog with RAILS considerably reduces the number of system performance evaluations in seismic performance studies. Also, when performance estimate bounds are not tight, we adopt an importance and stratified sampling method that in our computational experiments is various orders of magnitude more efficient than crude Monte Carlo. We assess the efficiency of RAILS using synthetic networks and illustrate its application to quantify the seismic risk of realistic yet streamlined systems hypothetically located in the San Francisco Bay Region.  相似文献   

13.
Recent efforts of regional risk assessment of structures often pose a challenge in dealing with the potentially variable uncertain input parameters. The source of uncertainties can be either epistemic or aleatoric. This article identifies uncertain variables exhibiting strongest influences on the seismic demand of bridge components through various regression techniques such as linear, stepwise, Ridge, Lasso, and elastic net regressions. The statistical results indicate that Lasso regression is the most effective one in predicting the demand model as it has the lowest mean square error and absolute error. As the sensitivity study identifies more than 1 significant variable, a multiparameter fragility model using Lasso regression is suggested in this paper. The proposed fragility methodology is able to identify the relative impact of each uncertain input variable and level of treatment needed for these variables in the estimation of seismic demand models and fragility curves. Thus, the proposed approach helps bridge owners to spend their resources judiciously (e.g., data collection, field investigations, and censoring) in the generation of a more reliable database for regional risk assessment. This proposed approach can be applicable to other structures.  相似文献   

14.
Probabilistic fragility functions have been developed for low-rise, reinforced concrete buildings subjected to earthquake triggered slow-moving slides, applying a recently published methodology by the same authors [5] (Fotopoulou and Pitilakis, 2012). We performed an extensive numerical parametric study considering different idealized slope configurations, soil and geological settings, as well as distances of the structure to the slope's crest and foundation typologies. Various features of the structural damage are explored, highlighting trends on the building's behavior to the permanent co-seismic slope deformations. The proposed generalized probabilistic fragility curves have been developed as a function of the expected outcrop peak ground acceleration (PGA) as provided by modern seismic codes, i.e. EC8, or the induced permanent slope ground displacements (PGD) for different slope angles, water table level and soil type, foundation typology and seismic design code. Detailed sensitivity analyses of the above parameters, reveal their relative importance for the vulnerability analysis and the quantitative risk assessment of low-rise RC buildings subjected to earthquake triggered slow-moving slides.  相似文献   

15.
Fragility curves constitute an emerging tool for the seismic risk assessment of all constructions at risk. They describe the probability of a structure being damaged beyond a specific damage state for various levels of ground shaking. They are usually represented as two-parameter (median and log-standard deviation) cumulative lognormal distributions. In this paper a numerical approach is proposed for the construction of fragility curves for geotechnical constructions. The methodology is applied to cantilever bridge abutments on surface foundation often used in road and railway networks. The response of the abutment to increasing levels of seismic intensity is evaluated using a 2D nonlinear FE model, with an elasto-plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping on the soil strain level. The effect of soil conditions and ground motion characteristics on the global soil and structural response is taken into account considering different typical soil profiles and seismic input motions. The objective is to assess the vulnerability of the road network as regards the performance of the bridge abutments; therefore, the level of damage, is described in terms of the range of settlement that is observed on the backfill. The effect of backfill material to the overall response of the abutment wall is also examined. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the structure geometry, the input motion and the soil properties as well as the associated uncertainties. The proposed fragility curves are verified based on observed damage during the 2007 Niigata-Chuetsu Oki earthquake.  相似文献   

16.
The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (mr)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (mr). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed.  相似文献   

17.
Seismic resilience of structures and infrastructure systems is a fast developing concept in the field of disaster management, promoting communities that are resistant and quickly recoverable in case of an extreme event. In this contest, probabilistic seismic demand and fragility analyses are two key elements of the seismic resilience assessment in the majority of the proposed methodologies. Several techniques are available to calculate fragility curves for different types of structures. In particular, to assess the seismic performance of the regional transportation infrastructure, methods for the fragility curve estimation for entire classes of bridges are required. These methods usually rely on a set of assumptions, partially because of the limited information. Other assumptions were introduced at the time when computational resources were inadequate for a purely numerical approach and closed‐form solutions were a convenient alternative. For instance, some of these popular assumptions are aimed at simplifying the model of the engineering demand. In this paper, a simulation‐based methodology is proposed, to take advantage of the computational resources widely available today and avoid such assumptions on the demand. The resulting increase in accuracy is estimated on a typical class of bridges (multi‐span simply supported). Most importantly, the quantitative impact of the assumptions is assessed in the context of a life‐cycle loss estimation analysis and resilience analysis. The results show that some assumptions preserve an acceptable level of accuracy, but others introduce a considerable error in the fragility curves and, in turn, in the expected resilience and life‐cycle losses of the structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
易损性分析是隧道工程领域防震减灾研究的重要方法。首先,详细综述了国内外隧道地震易损性研究历史与现状;其次,归纳了国内外隧道地震易损性分析主要方法,并总结了各种方法的实际适用性;接着,提出了隧道地震易损性评估步骤,并且讨论了以数值模拟为主要手段的理论易损性曲线建立中的3个关键内容:(1)输入参数确定;(2)破坏状态分级;(3)相关不确定性参数计算;最后,指出该领域一些亟待解决的问题和未来研究发展的方向。结果表明:隧道地震易损性分析能通过考虑相关不确定性因素,反映了隧道在地震荷载作用下的性能,有利于未来的风险评估和损失估算,对基于性能的隧道抗震设计的发展具有重要意义。  相似文献   

19.
This paper presents a method and results of seismic fragility estimation of frame structures with friction devices and with friction devices and restrictors. The seismic intensity parameter, defined as the mean value of the pseudovelocity spectrum in a specified periods band, is proved to allow the use of linear regression analysis of the response parameters of the considered non‐linear structures on seismic intensity. A simplified method of fragility estimation is proposed, based on the concept of ‘mean seismic excitation’ and linear regression of the seismic response parameters on seismic intensity parameter. The key risk contributors for the system with friction devices and for the system with friction devices and restrictors are identified on the basis of the fragility analysis, and recommendations for improvement of the seismic response of the respective systems are derived. The results of the fragility study show that when the initial ‘bare’ frame is retrofitted by rigidly connected bracings the effect is much lower than in the case of connecting the bracings by friction devices and especially by friction devices and restrictors. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Use of Microseismic Source Parameters for Rockburst Hazard Assessment   总被引:5,自引:0,他引:5  
—Since 1994 Noranda’s Brunswick #12 Mine has complemented their MP250/Queen’s Full Waveform seismic systems with an ISS (Integrated Seismic System). Time histories of ISS source parameter information form a component of the daily ground control decision-making. This paper discusses a methodology for microseismic hazard assessment, which filters ISS data using energy, apparent stress and seismic moment criteria to identify those events that are relevant for the assessment and decision-making process. Seismic events are classified into four groups (1) no or minor hazard; (2) seismically-triggered, gravity-driven hazards; (3) stress-adjustment-driven hazards resulting in bulking due to rock mass fracturing; and (4) deformation-driven hazards exploiting existing rock mass damage. Three case histories from 1994–1996, for the 1000 Level South and the 850 Level at Brunswick Mine, are analyzed using this technique to calibrate and verify the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号