首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

2.
R. Kariyappa  J. M. Pap 《Solar physics》1996,167(1-2):115-123
We have digitized the Ca ii K spectroheliograms, observed at the National Solar Observatory at Sacramento Peak, for the period 1980 (maximum of solar cycle 21), 1985 (minimum of solar cycle 21), 1987 (beginning of the ascending phase of solar cycle 22), 1988 and 1989 (ascending phase and maximum of solar cycle 22), and 1992 (declining phase of solar cycle 22). A new method for analyzing the K spectroheliograms has been developed and applied to the K images for the time interval of 1992. Using histograms of intensity, we have segregated and measured the cumulative intensity and area of various chromospheric features like the plages, magnetic network and intranetwork elements. Also, the full width at half maximum (FWHM) derived from the histograms has been introduced as a new index for describing the chromospheric activity in the K-line. The full-disk intensity (spatial K index) has been derived from spatially-resolved K images and compared to the spectral K index derived from the line profiles for the full disk. Both the spatial K index and FWHM have been compared to the UV irradiance measured in the Mg ii h and k lines by the NOAA9 satellite and found that they are highly correlated with the Mg ii h and k c/w ratio.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

3.
We have compared total solar irradiance from Nimbus-7 with ground-based photometry from the San Fernando Observatory (SFO) for 109 days between June 1 and December 31, 1988. We have also included in some analyses NOAA-9 SBUV2 data orF10.7 radio flux. The Nimbus-7 data are from orbital samples, averaged to the mean time of observation at SFO. Using the same parameters as in Chapmanet al. (1992), the multiple regression gives anR 2 = 0.9131 and a solar minimum irradiance,S 0, = 1371.76 ± 0.18 W m–2 for the best fit.  相似文献   

4.
The solar Mgii core-to-wing ratio is a useful index of UV variability throughout the solar cycle because it has been measured since 1978 in a series of successive satellite missions: Nimbus 7, Solar Mesosphere Explorer (SME), the NOAA 9–14 series, Upper Atmosphere Research Satellite (UARS), and ERS-2. Eventual construction of a single time series from 1978 to the present by combining these measurements will give a long record of almost daily UV variability to serve as a surrogate for estimating both UV and EUV solar radiation. Here we address the effect of spectral resolution on determination of both long-term and short-term solar variability from this index. We use UARS/SOLSTICE measurements of the Mgii line from October 1991 to December 1996 to study the effect of two spectral resolution regimes characteristic of existing measurements, 0.20 to 0.25 nm and 1.10 to 1.15 nm, on determination of the amplitude of 27-day rotational modulation and the more gradual change in chromospheric radiation in the declining phase of solar cycle 22. The two Mgii indices give solar variations that differ by a scaling factor of 2× for both the solar cycle change from 1992 to 1997 and the amplitude of 27-day modulation over the same period. Both types of measurements appear to yield solar signal equally well except at solar minimum when the solar changes become quite small.  相似文献   

5.
Livingston  W.  Wallace  L. 《Solar physics》2003,212(2):227-237
We employ limb darkening, spectral energy distribution (color), and center-disk spectrum line strength to investigate photospheric temporal variability. Current limb-darkening curves agree to 1% with past observations taken at different epochs extending back to 1975. Concerning color, from the data of Labs and Neckel (Cox, 1999) we deduce that the solar limb is 1000 Å more red than disk center. But when integrated over the entire disk to represent the Sun-as-a-star, the color shift is only 30 Å. Color is therefore not a very sensitive indicator of full-disk photospheric change. We examine the center-disk time series for C 5380 Å and Fe 5379 Å equivalent width and the Ca K index. The ratio C 5380/Fe 5379 in equivalent width is 0.4221+0.00011 (±0.00003) y –1, indicating secular change but with no cycle modulation. Converted to temperature this variance amounts to ±0.028 K. This is in contrast to the full-disk cycle modulation of these lines reported by Gray and Livingston (1997b). Ca K index also exhibits no cycle variation at disk center. Taking into account these findings, plus the small fraction of the photosphere occupied by magnetic elements as revealed in high-resolution G-band pictures, we suggest that cycle magnetic fields thread through the basal atmosphere without physical effect; that the basal quiet atmosphere is observationally immutable to the magnetic cycle within the limits given above.  相似文献   

6.
While evaluating the chromospheric variability (solar cycle related or any other) using the Ca II K line (3933.684 Å) as an indicator, an essential prerequisite is the knowledge of the profile of a truly quiet Sun in the integrated light. Such a profile can serve as a bench mark over which enhancements can be measured, particularly when modelling variability. This paper describes how such a K-line profile has been derived for the quiet Sun using disc-integrated light.  相似文献   

7.
The Mg II Index is a proxy indicator of solar UV activity which is produced from measurements of the chromospheric Mg II absorption line at 280 nm. Mg II index data sets have been derived from the NOAA-9 and NOAA-11 SBUV/2 irradiance data sets using both discrete scan measurements about the Mg II line and continuous scan (sweep) measurements over the UV spectrum from 160–400 nm. This paper will discuss the rationale behind the creation of the different Mg II index products, and make a quantitative assessment of the differences between these products. Recommendations for future use of the Mg II index will also be presented.  相似文献   

8.
Using the smoothed time series of maximum CME speed index for solar cycle 23, it is found that this index, analyzed jointly with six other solar activity indicators, shows a hysteresis phenomenon. The total solar irradiance, coronal index, solar radio flux (10.7?cm), Mg?ii core-to-wing ratio, sunspot area, and H?? flare index follow different paths for the ascending and the descending phases of solar cycle?23, while a saturation effect exists at the maximum phase of the cycle. However, the separations between the paths are not the same for the different solar activity indicators used: the H?? flare index and total solar irradiance depict broad loops, while the Mg?ii core-to-wing ratio and sunspot area depict narrow hysteresis loops. The lag times of these indices with respect to the maximum CME speed index are discussed, confirming that the hysteresis represents a clue in the search for physical processes responsible for changing solar emission.  相似文献   

9.
We have processed a 10-year set of BBSO Caii K-line filtergrams covering most of solar cycle 22. The excess K-line emission is integrated to form linear and square-root activity indices that are fitted to UV data from UARS and SME. Good fits are found both for the Mgii core–wing ratio (linear) and total L irradiance (square root) and the indices are thus good proxies for UV data. The SME L irradiance is systematically lower by 20% than predicted from our corresponding K-line indices. The 10.7 cm radio data confirms that SME underestimated the flux. The network is partly responsible for the solar cycle variation of the indices and is relatively more important in L than in Mgii and Caii K. This is due to the saturation of L equivalent width. We also report on substantial improvements to the equipment and reduction software. The system is now based on a digital CCD camera which promises more accurate measurements in the upcoming solar cycle 23.  相似文献   

10.
Analyses based on irradiance observations from space within the last one and a half decades have discovered variations in the entire solar spectrum and at UV wavelengths on time scales of minutes to decades. In this paper we analyze the distribution of the measuring uncertainties and daily fluctuations in total solar irradiance measured by the Nimbus-7/ERB and SMM/ACRIM I radiometers as a function of solar cycle. Changes in solar total irradiance and its surrogates shorter than the solar rotation have also been considered as noise and have been removed from the data. Our results show that the noise (both instrumental and solar noise) changes as a function of the solar cycle, being higher during high solar activity conditions. The analysis of the scatter plot diagrams between the data and their standard deviation, the so-called dispersion diagrams, provides a useful tool to estimate and predict the time of solar maximum and minimum activity conditions.Deceased on October 13, 1994.  相似文献   

11.
Although solar ultraviolet (UV) irradiance measurements have been made regularly from satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during this period. Solar activity is currently moving through the minimum phase between cycles 22 and 23, so it is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same instrument during the previous solar minimum in 1985–1986. NOAA-9 SBUV/2 is the first instrument to make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g., 205 nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for long-term instrument sensitivity changes. We use the Mgii proxy index to illustrate variability on solar cycle time scales, and to provide complementary information on short-term variability. Comparisons with contemporaneous data from Nimbus-7 SBUV (1985–1986) and UARS SUSIM (1994–1995) are used to validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the cycle 21–22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a condition which has only been seen previously for shorter intervals during rising or maximum activity levels. The 205 nm irradiance and Mgii index are expected to track very closely on short time scales, but show differences in behavior during the minimum between cycles 22 and 23.  相似文献   

12.
The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (P n m )()cosm and P n m ()sinm) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the equator (2 sectors, n = m = 1). This 2-sector harmonic was particularly dominant during the active years of solar cycles 19 and 20. The north-south dipole harmonic (n = 1, m = 0) was prominent only during quiet years and was relatively insignificant during the active years. (The derived north-south dipole includes magnetic fields from the entire solar surface and does not necessarily correlate with either the dipole-like appearance of the polar regions of the Sun or with the weak polar magnetic fields.) The 4-sector structure (n = m = 2) was prominent, and often dominant, at various times throughout the cycle. A 6-sector structure (n = m = 3) occasionally became dominant for very brief periods during the active years. Contributions to the general solar magnetic field from harmonics of principal index 4 n 9 were generally relatively small throughout this entire solar cycle with one outstanding exception. For a period of several months prior to the large August 1972 flares, the global photospheric field was dominated by an n = 5 harmonic; this harmonic returned to a low value shortly after the August 1972 flare events. Rapid changes in the global harmonics, in particular, relative and absolute changes in the contributions of harmonics of different principal index n to the global field, imply that the global solar field is not very deep or that very strong fluid flows connect the photosphere with deeper layers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Judit Pap 《Solar physics》1987,112(1):181-193
Measurements of the Nimbus-7/ERB and SMM/ACRIM radiometers indicated several dips in the total solar irradiance in 1983 and in the first part of 1984. The dips in 1983, which should have a real solar origin, were selected according to the peaks of the projected areas of the active sunspot groups above the 2 error limit of their data set. In the first part of 1984 the sunspot activity was strong and few irradiance dips with relatively large amplitudes were observed. In the second part of 1984 the sunspot activity disappeared and at that time the solar constant only fluctuated around its mean.  相似文献   

14.
We compute a new grid of plage models to determine the difference in temperature versus mass column density structure T(m) between plage regions and the quiet solar chromosphere, and to test whether the solar chromosphere is geometrically thinner in plages. We compare partial redistribution calculations of Mg ii h and k and Ca ii K to NRL Skylab observations of Mg ii h and k in six active regions and Ca ii K intensities obtained from spectroheliograms taken at approximately the same time as the Mg ii observations. We find that the plage observations are better matched by models with linear (in log m) temperature distributions and larger values of m 0 (the mass column density at the 8000 K layer in the chromosphere), than by models with larger low chromosphere temperature gradients but values of m 0 similar to the quiet Sun. Our derived temperature structures are in agreement with the grid originally proposed by Shine and Linsky, but our analysis is in contrast to the study by Kelch which implies that stellar chromospheric geometrical thickness is not affected by chromospheric activity. We conclude that either the stellar Mg ii observations upon which the Kelch study was based are of poorer quality than had been assumed, or that the spatial averaging of inhomogeneous structures, which is inherent in the stellar data, does not lead to a best fit one-component model similar in detail to that of a stellar or a solar plage.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Staff member, Quantum Physics Division, National Bureau of Standards.  相似文献   

15.
Correlation analysis of the mean longitude distribution of sunspot groups (taken from the Greenwich Photoheliographic Results) and high-speed solar wind streams (inferred from the C9 index for geomagnetic disturbances) with the Bartels rotation period P = 27.0 days shows anti-correlation for individual cycles.In particular, the longitudes of post-maximum stable streams of cycle 18 and 19 are well anticorrelated with the preferred longitudes of sunspot groups during the maximum activity periods of these cycles. This is further analyzed using the daily Zürich sunspot number, R, between 1932 and 1980, which reveals a conspicuous similarity of cycle 18 and 19 as well as cycle 20 and 21.We conclude that there is a solar memory for preferred longitudes of activity extending at least over one, probably two cycles (i.e. one magnetic cycle of 22 years). We conjecture that this memory extends over longer intervals of time as a long-term feature of solar activity.  相似文献   

16.
We present an analysis of 2634 Ca II K‐line full‐disk filtergrams obtained with the 15‐cm aperture photometric full‐disk telescope at Big Bear Solar Observatory during the period from 1996 January 1 to 2005 October 24. Using limb darkening corrected and contrast enhanced filtergrams, solar activity indices were derived, which are sensitive to the 11‐year solar activity cycle and 27‐day rotational period of plages around active regions and the bright chromospheric network. The present work extends an earlier study (solar cycle 22), which was based on video data. The current digital data are of much improved quality with higher spatial resolution and a narrower passband ameliorating photometric accuracy. The time series of chromospheric activity indices cover most of solar cycle 23. One of the most conspicuous features of the Ca II K indices is the secondary maximum in late 2001/early 2002 after an initial decline of chromospheric activity during the first half of 2001. We conclude that a secular trend exists in the Ca II K indices, which has its origin in the bright chromospheric network and brightenings related to decaying active regions. Superposed on this secular trend are the signatures of recurring, long‐lived active regions, which are clusters of persistent and continuously emerging magnetic flux. Such features are less visible, when the activity belts on both side of the equator are devoid of the brightenings related to decaying active regions as was the case in October/November 2003 at a time when a superactivity complex including several naked‐eye sunspots emerged (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A sequence of images taken at different positions in the resonance lines of Ca ii, Mg ii, and H i was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca ii K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg ii lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the L/Ca K ratio, shows noticeable variations within the prominence. The L intensity is about 0.3 times the intensity measured in the quiet Sun, and the L/L ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.DASOP, Observatoire de Paris, 92190 Meudon, France.  相似文献   

18.
UARS SOLSTICE data have been subjected to Fourier and wavelet analyses in order to search for the signature of the solar rotation law in the disk‐integrated irradiance of UV lines. Lyman‐α, Mg II, and Ca II data show a different behaviour. In the SOLSTICE data there are significant temporal variations of the rotation rate of the UV tracers over 5—6 years. Often several distinct rotation periods appear almost simultaneously. Beside the basic period around 27 days there are signals at 32—35 days corresponding to the rotation rate at very high latitudes. For more than 5 years during another period of the solar cycle the rotational behaviour is quite different; there is an indication of differential rotation of active regions in these Ca II ground‐based data. The data contain a wealth of information about the solar differential rotation, but it proves difficult to disentangle the effects of the different emitting sources.  相似文献   

19.
20.
Fourteen years (November 16, 1978 through January 24, 1993) of Nimbus-7 total solar irradiance measurements have been made. The measured mean annual solar energy just outside of the Earth's atmosphere was about 0.1% (1.4 W/m2) higher in the peak years of 1979 (cycle 21) and 1991 (cycle 22) than in the quiet Sun years of 1985/86. Comparison with shorter, independent solar measurement sets and with empirical models qualitatively confirms the Nimbus-7 results. But these comparisons also raise questions of detail for future studies: in which years did the peaks actually occur and just how accurate are the models and the measurements?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号