共查询到3条相似文献,搜索用时 2 毫秒
1.
Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America 总被引:1,自引:0,他引:1
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas. 相似文献
2.
Mohammad Heidarzadeh Moharram D. Pirooz Nasser H. Zaker Ahmet C. Yalciner 《Natural Hazards》2009,48(2):229-243
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern
Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the
past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment.
Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The
numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis
each resulting from a 1945-type earthquake (M
w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the
MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending
on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern
coast of the United Arab Emirates, respectively. 相似文献
3.
S. G. SONG L. F. ZHANG Y. NIU C. J. WEI J. G. LIOU G. M. SHU 《Journal of Metamorphic Geology》2007,25(5):547-563
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. P–T estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and P–T estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak P–Tconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times. 相似文献