首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabasites from the northern Adula Nappe Complex (ANC) display a complex microstructural evolution recording episodes of deformation and metamorphic re‐equilibration that were obliterated in the surrounding phengite‐bearing schists. Pre‐D1 and D1 deformation episodes are preserved as mineral inclusions within garnet cores of some amphibole‐bearing eclogites and record high‐temperature greenschist‐/amphibolite‐facies conditions. D2 produced an eclogite‐facies foliation which developed at 580 ± 70°C and 19 ± 3 kbar. D3 was a composite deformation episode which can be divided into three sub‐episodes D3m, D3a and D3b which occurred as the metamorphism evolved from post‐eclogitic high‐pressure and low‐temperature conditions through to amphibolite‐facies conditions at 590 ± 30°C and 11.7 ± 1.3 kbar. The D3 deformation episode was responsible for the development of the S3 regional‐scale foliation in the surrounding schists, whilst D4 caused the development of an S4 greenschist foliation. The composite nature of the D3 episode indicates that rocks of the northern ANC experienced a protracted post‐eclogitic structural reworking and that the current structure of this part of the Alps is a late‐Alpine feature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Metabasic rocks from the Adula Nappe in the Central Alps record a regional high‐pressure metamorphic event during the Eocene, and display a regional variation in high‐pressure mineral assemblages from barroisite, or glaucophane, bearing garnet amphibolites in the north to kyanite eclogites in the central part of the nappe. High‐pressure rocks from all parts of the nappe show the same metamorphic evolution of assemblages consistent with prograde blueschist, high‐pressure amphibolite or eclogite facies conditions followed by peak‐pressure eclogite facies conditions and decompression to the greenschist or amphibolite facies. Average PT calculations (using thermocalc ) quantitatively establish nested, clockwise P–T paths for different parts of the Adula Nappe that are displaced to higher pressure and temperature from north to south. Metamorphic conditions at peak pressure increase from about 17 kbar, 640 °C in the north to 22 kbar, 750 °C in the centre and 25 kbar, 750 °C in the south. The northern and central Adula Nappe behaved as a coherent tectonic unit at peak pressures and during decompression, and thermobarometric results are interpreted in terms of a metamorphic field gradient of 9.6 ± 2.0 °C km?1 and 0.20 ± 0.05 kbar km?1. These results constrain the peak‐pressure position and orientation of the nappe to a depth of 55–75 km, dipping at an angle of approximately 45° towards the south. Results from the southern Adula Nappe are not consistent with the metamorphic field gradient determined for the northern and central parts, which suggests that the southern Adula Nappe may have been separated from central and northern parts at peak pressure.  相似文献   

3.
Phengite‐bearing schists of the northern Adula Nappe experienced a polymetamorphic and polycyclic evolution that was associated with five deformation episodes. Evidence of a pre‐Alpine metamorphic event is preserved within garnet cores of some amphibole‐bearing schists. The D1 and D2 deformation episodes are recorded by S1 and S2 foliations preserved only within metre‐scale domains of low‐D3 strain. S1 is a relict foliation. Blueschist‐facies conditions at 565 ± 10°C and 11.5 ± 1.5 kbar were attained during D2 and were associated with the development of isoclinal folding and an S2 foliation. The D3 episode took place at 665 ± 50°C and 11.5 ± 2.1 kbar and was responsible for the development of a transpositive S3 foliation. The D4 episode took place at T < 550 ± 10°C and was associated with the development of a discrete S4 foliation and S‐C structures. The D5 episode is recorded by sub‐vertical metre‐scale open folds or centimetre‐scale kinks. The structural and metamorphic evolution described here indicates that the northern and central parts of the Adula Nappe were distinct continental crustal fragments and were brought together under amphibolite‐facies conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Integrated petrological and structural investigations of eclogites from the eclogite zone of the Voltri Massif (Ligurian Alps) have been used to reconstruct a complete Alpine P–T deformation path from burial by subduction to subsequent exhumation. The early metamorphic evolution of the eclogites has been unravelled by correlating garnet zonation trends with the chemical variations in inclusions found in the different garnet domains. Garnet in massive eclogites displays typical growth zoning, whereas garnet in foliated eclogites shows rim‐ward resorption, likely related to re‐equilibration during retrogressive evolution. Garnet inclusions are distinctly different from core to rim, consisting primarily of Ca‐, Na/Ca‐amphibole, epidote, paragonite and talc in garnet cores and of clinopyroxene ± talc in the outer garnet domains. Quantitative thermobarometry on the inclusion assemblages in the garnet cores defines an initial greenschist‐to‐amphibolite facies metamorphic stage (M1 stage) at c. 450–500 °C and 5–8 kbar. Coexistence of omphacite + talc + katophorite inclusion assemblage in the outer garnet domains indicate c. 550 °C and 20 kbar, conditions which were considered as minimum P–T estimates for the M2 eclogitic stage. The early phase of retrograde reactions is polyphase and equilibrated under epidote–blueschist facies (M3 stage), characterized by the development of composite reaction textures (garnet necklaces and fluid‐assisted Na‐amphibole‐bearing symplectites) produced at the expense of the primary M2 garnet‐clinopyroxene assemblage. The blueschist retrogression is contemporaneous with the development of a penetrative deformation (D3) that resulted in a non‐coaxial fabric, with dominant top‐to‐the‐N sense of shear during rock exhumation. All of that is overprinted by a texturally late amphibolite/greenschist facies assemblages (M4 & M5 stages), which are not associated with a penetrative structural fabric. The combined P–T deformation data are consistent with an overall counter‐clockwise path, from the greenschist/amphibolite, through the eclogite, the blueschist to the greenschist facies. These new results provide insights into the dynamic evolution of the Tertiary oceanic subduction processes leading to the building up of the Alpine orogen and the mechanisms involved in the exhumation of its high‐pressure roots.  相似文献   

5.
Cr-rich magnesiochloritoid in the eclogitized ophiolites of the Monviso massif occurs in the least differentiated rocks of the gabbroic sequence (troctolites to melatroctolites). Chloritoid ( X Mg=0.63–0.85; Cr≤0.55, atoms) co-exists with omphacite, talc and garnet. Minor, syn-eclogitic minerals are chromite, rutile and sometimes magnesite and Cr–Ti oxides.
Coronitic textures, indicative of a static recrystallization, characterize the analysed samples. Layers of variable mineral composition develop among igneous plagioclase, olivine, clinopyroxene and spinel. The minerals in the coronitic layers display sharp compositional zonings. The igneous minerals are commonly not preserved; their presence in the original assemblage is inferred from the mineralogical composition of the pseudomorphs.
Syn-eclogitic volatile components are indicated by the development of OH-bearing minerals (e.g. chloritoid & talc) and carbonates (e.g. magnesite), and supported by the presence of coarse-grained and fibrous mineral growths. The complex pseudomorphic replacements of igneous minerals suggest that these rocks changed their mineralogical composition prior to the eclogite facies recrystallization, most likely during ocean-floor metamorphism. It is suggested that syn-eclogitic fluids formed by breakdown reactions of pre-eclogitic volatile-bearing minerals.
Geothermobarometry indicates that the investigated rocks recrystallized at a depth corresponding to 2.4  GPa and temperatures of 620±50  °C. The attainment of high-pressure conditions is supported by the presence of magnesiochloritoid, magnesite and garnet with high pyrope content (up to 58  mol%). P–T  estimates point to a very low thermal gradient (about 9  °C km−1), comparable to that deduced in the adjacent Dora-Maira ultra-high pressure unit.  相似文献   

6.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   

7.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

8.
拉萨地块中东部松多高压变质带是揭示拉萨地体形成与演化过程的重要研究对象。松多变质带记录了古特提斯洋的俯冲和闭合过程。前人对松多地区出露的榴辉岩及围岩开展了大量的岩石学工作,但变质峰期温压条件没有得到很好的限定,温压分布范围较广,且变质演化过程仍存争议。笔者等总结了松多变质带不同地区榴辉岩的岩石学和矿物学特征,汇总了不同计算方法得到的温压条件。通过对比发现,松多高压变质带内榴辉岩的峰期温压条件处于465~880℃,2.5~3.9 GPa的范围,其宽泛的峰期温压条件是由于不同计算方法和折返机制造成的。与传统矿物对温压计相比,变质相平衡模拟方法更适合低温榴辉岩的峰期温压条件及变质过程的限定。  相似文献   

9.
张忠炜  张聪  秦雪晴  赵晓轩  申婷婷  邱添  杜瑾雪 《地质论评》2022,68(2):2022030032-2022030032
拉萨地块中东部松多高压变质带是揭示拉萨地体形成与演化过程的重要研究对象。松多变质带记录了古特提斯洋的俯冲和闭合过程。前人对松多地区出露的榴辉岩及围岩开展了大量的岩石学工作,但变质峰期温压条件没有得到很好的限定,温压分布范围较广,且变质演化过程仍存争议。笔者等总结了松多变质带不同地区榴辉岩的岩石学和矿物学特征,汇总了不同计算方法得到的温压条件。通过对比发现,松多高压变质带内榴辉岩的峰期温压条件处于465~880℃,2.5~3.9 GPa的范围,其宽泛的峰期温压条件是由于不同计算方法和折返机制造成的。与传统矿物对温压计相比,变质相平衡模拟方法更适合低温榴辉岩的峰期温压条件及变质过程的限定。  相似文献   

10.
Alpine deformation in the Grimsel granodiorite (Aar massif, Central Alps) at greenschist facies conditions (6.5 ± 1 kbar for 450°C ± 25°C) is characterized by the development of a network of centimetre to decametre localized shear zones that surround lenses of undeformed granodiorite. Localization of deformation is assumed to be the result of a first stage of extreme localization on brittle precursors (nucleation stage) followed by a transition to ductile deformation and lateral propagation into the weakly deformed granodiorite (widening stage). A paradox of this model is that the development of the ductile shear zone is accompanied by the crystallization of large amounts of phyllosilicates (white mica and chlorite) that maintains a weak rheology in the localized shear zone relative to the host rock so that deformation is localized and prevents shear zone widening. We suggest that chemical processes, and more particularly, the metamorphic reactions and metasomatism occurring during re‐equilibration of the metastable magmatic assemblage induced shear zone widening at these P–T–X conditions. These processes (reactions and mass transfer) were driven by the chemical potential gradients that developed between the thermodynamically metastable magmatic assemblage at the edge of the shear zone and the stable white mica and chlorite rich ultramylonite formed during the first stage of shear zone due to localized fluid infiltration metasomatism. PT and chemical potential projections and sections show that the process of equilibration of the wall rocks (μ–μ path) occurs via the reactions: kf + cz + ab + bio + MgO + H2O = mu + q + CaO + Na2O and cz + ab + bio + MgO + H2O = chl + mu + q + CaO + Na2O. Computed phase diagram and mass balance calculations predict that these reactions induce relative losses of CaO and Na2O of ~100% and ~40% respectively, coupled with hydration and a gain of ~140% for MgO. Intermediate rocks within the strain gradient (ultramylonite, mylonite and orthogneiss) reflect various degrees of re‐equilibration and metasomatism. The softening reaction involved may have reduced the strength at the edge of the shear zone and therefore promoted shear zone widening. Chemical potential phase diagram sections also indicate that the re‐equilibration process has a strong influence on equilibrium mineral compositions. For instance, the decrease in Si‐content of phengite from 3.29 to 3.14 p.f.u, when white mica is in equilibrium with the chlorite‐bearing assemblage, may be misinterpreted as the result of decompression during shear zone development while it is due only to syn‐deformation metasomatism at the peak metamorphic condition. The results of this study suggest that it is critical to consider chemical processes in the formation of shear zones particularly when deformation affects metastable assemblages and mass transfer are involved.  相似文献   

11.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

12.
Kyanite-rich and quartz-rich eclogites occur as lenses within amphibolite-facies quartzo-feldspathic gneisses in the Pohorje Mountains, Northern Slovenia, that form the easternmost Austroalpine basement. Major and trace elements indicate that the kyanite-rich eclogites were derived from plagioclase-rich gabbroic cumulates, whereas the quartz-rich eclogites represent more fractionated basaltic compositions. Both varieties are characterized by a LREE-depleted N-MORB type REE signature. Geothermobarometry and P-T pseudosections indicate that eclogites equilibrated at 1.8-2.5 GPa and 630-700 °C, consistently with the lack of coesite and with equilibration conditions of the chemically similar eclogites from the adjacent basement units at Koralpe and Saualpe type localities. Decompression reaction textures include (i) clinopyroxene-plagioclase intergrowths after omphacite, (ii) replacement of kyanite by corundum-plagioclase-spinel±sapphirine symplectites, (iii) breakdown of phengite to biotite-plagioclase sapphirine symplectites. The results of this study indicate that Koralpe, Saualpe and Pohorje high-pressure rocks represent former MORB-type oceanic crust that was subducted in the course of the late Cretaceous (approximately 100 Ma ago) collision between the European and the Apulian plates.  相似文献   

13.
The Helvetic nappe system exhibits three-dimensional (3-D) features such as the lateral variation in geometry between the Morcles and Doldenhorn fold nappes or the Rawil depression. We perform 3-D finite element simulations of linear and power-law viscous flow to investigate fold nappe formation during shortening of a half graben with laterally varying thickness. 3-D ellipsoids and corresponding 2-D intersection ellipses are used to quantify finite strain. Fold nappes which formed above a thicker graben have (i) larger amplitudes, (ii) a less sheared and thinned overturned limb, and (iii) a larger thickness than fold nappes formed above a thinner graben. These results agree with observations for the Morcles and Doldenhorn nappes. We also perform 3-D simulations for a tectonic scenario suggested for the evolution of the Rawil depression. The basement is shortened and extended laterally and includes a graben which is oblique to the shortening direction and acts as mechanical weak zone. The graben causes laterally varying basement uplift generating a depression whose amplitude depends on the graben orientation and the stress exponent of basement and sediments. The axial plunge of the depression is smaller (approximately 10°) than the observed plunge (approximately 30°) indicating that additional processes are required to explain the geometry of the Rawil depression.  相似文献   

14.
The massive Zn-(Pb) sulfide ore body at Rampura-Agucha in Bhilwara district, Rajasthan, occurs within graphitic metapelites surrounded by garnet-biotite-sillimanite gneiss containing concordant bodies of amphibolite. These rocks and the sulfide ores have been studied to estimate the pressure, temperature and fluid composition associated with upper amphibolite facies metamorphism. Geothermobarometric calculations involving garnet-biotite and garnet-hornblende pairs, as well as sphalerite-hexagonal pyrrhotite-pyrite and garnet-plagioclase-sillimanite-quartz assemblages indicate that the most pervasive P-T condition during peak of regional metamorphism was 650°C and 6 kb, and was attained between the first and second deformations in the region. Some temperature-pressure estimates also cluster around 500°C–5.1 kb which probably represent retrograde cooling during unloading. Consideration of devolatilization equilibria in the C-O-H-S system at the pervasive metamorphic conditions mentioned above shows that the metamorphic fluid was H2O-rich ( ) but also had a substantial component of . and were the other important phases in the fluid. CO (XCO = 0.002) and were the minor phases in the fluid. It is probable that a part of this aqueous fluid was consumed by re-/neocrystallization of hydrous silicate phases like chlorite during the retrogressive metamorphic path, so that fluid entrapped in quartz below 450°C was rendered CO2-rich (Holleret al 1996).  相似文献   

15.
Abstract A study has been made of the high-pressure early-Alpine re-equilibration in the eclogites and metasedimentary cover of the Val d'Ala di Lanzo ophiolite. All of the main high-pressure minerals have been analysed and their compositions used to determine re-equilibration temperatures. The minimum conditions proposed ( P = 1.3 GPa, T = 450–460°C) are also indicated by the presence of a jadeite+quartz-bearing metagranite.
The temperatures are compared with those reported for similar eclogites from the Voltri Group, the Aosta Valley and the Valais. Comparison of recalculated temperatures shows that the temperature (and probably the pressure) of the eclogitic re-equilibration increased in the Aosta Valley and the Valais, in keeping with what has been observed in the internal Penninic basement of the Gran Paradiso and Monte Rosa crystalline massifs.  相似文献   

16.
The theory of sublattice solid solution model and optimization methods have been described for modelling the geochemically important multicomponentmultisite silicate solid solution systems. Some new X-ray Mg-Fe2+ site occupancy data along with some selection from the existing data on heated orthopyroxene in the temperature range 600 to 1000° C have been used in thermodynamic modelling of the orthopyroxene (Mg, Fe)2Si2O6 solid solution using the sublattice solution model. The optimized interaction energy solution parameters are:
  相似文献   

17.
18.
Previous studies suggest that the metamorphic evolution of the ultrahigh‐pressure garnet peridotite from Alpe Arami was characterized by rapid subduction to a depth of c. 180 km with partial chemical equilibration at c. 5.9 Gpa/1180 °C and an initial stage of near‐isothermal decompression followed by enhanced cooling. In this study, average cooling rates were constrained by diffusion modelling on retrograde Fe–Mg zonation profiles across garnet porphyroclasts. Considering the effects of temperature, pressure and garnet bulk composition on the Fe–Mg interdiffusion coefficient, cooling rates of 380–1600 °C Myr?1 for the interval from 1180 to 800 °C were obtained. Similar or even higher average cooling rates resulted from thermal modelling, whereby the characteristics of the calculated temperature‐time path depend on the shape and size of the hot peridotite body and the boundary conditions of the cooling process. The very high cooling rates obtained from both geospeedometry and thermal modelling imply extremely fast exhumation rates of c. 15 mm yr?1 or more. These results agree with the range of exhumation rates (16–50 mm yr?1) deduced from geochronological results. It is suggested that the Alpe Arami peridotite passively returned towards the surface as part of a buoyant sliver, caused as a consequence of slab breakoff.  相似文献   

19.
In the Austroalpine Mont Mary nappe (Italian Western Alps) discrete zones of mylonites–ultramylonites developed from coarse-grained, upper amphibolite facies metapelites of pre-Alpine age. The syn–mylonitic mineral assemblage is quartz–biotite–muscovite–plagioclase–garnet–sillimanite–ilmenite–graphite, and formed via the model hydration reaction: Grt1+Kfs+H2O=Bt2+Ilm2+Qtz+Ms± Sil .Grain-size reduction of about three orders of magnitude was accompanied by extensive recrystallization of all minerals except sillimanite, and by compositional changes of garnet and biotite. Deformation took place at temperatures of 510–580  °C under low-pressure conditions (0.25–0.45 GPa) and corresponds to the latest stages of pre-Alpine metamorphic evolution. The pre-Alpine mylonitization conditions were close to the brittle-ductile transition, as indicated by syn–mylonitic generation of pseudotachylytes and high differential stress inferred from quartz grain-size piezometry. The brittle-ductile behaviour at a relatively high temperature, and the absence of annealing textures in quartz aggregates, are suggestive of water-deficient conditions during mylonitization. These were accomplished through progressive consumption of water by syn–kinematic hydration reaction and by adsorption onto the greatly increased grain boundary area resulting from dynamic recrystallization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号