首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of numerical methods for stochastic differential equations has intensified over the past decade. The earliest methods were usually heuristic adaptations of deterministic methods, but were found to have limited accuracy regardless of the order of the original scheme. A stochastic counterpart of the Taylor formula now provides a framework for the systematic investigation of numerical methods for stochastic differential equations. It suggests numerical schemes, which involve multiple stochastic integrals, of higher order of convergence. We shall survey the literature on these and on the earlier schemes in this paper. Our discussion will focus on diffusion processes, but we shall also indicate the extensions needed to handle processes with jump components. In particular, we shall classify the schemes according to strong or weak convergence criteria, depending on whether the approximation of the sample paths or of the probability distribution is of main interest.  相似文献   

2.
The development of numerical methods for stochastic differential equations has intensified over the past decade. The earliest methods were usually heuristic adaptations of deterministic methods, but were found to have limited accuracy regardless of the order of the original scheme. A stochastic counterpart of the Taylor formula now provides a framework for the systematic investigation of numerical methods for stochastic differential equations. It suggests numerical schemes, which involve multiple stochastic integrals, of higher order of convergence. We shall survey the literature on these and on the earlier schemes in this paper. Our discussion will focus on diffusion processes, but we shall also indicate the extensions needed to handle processes with jump components. In particular, we shall classify the schemes according to strong or weak convergence criteria, depending on whether the approximation of the sample paths or of the probability distribution is of main interest.  相似文献   

3.
The use of stochastic models in subsurface hydrology is growing at a logistic pace. To tie together a number of different stochastic methodologies for deriving subsurface transport equations, we have put together a brief review of some of the more common techniques. Our attention is confined to a few select methodologies so that we might delve in detail into assumptions required by the various approaches and their strengths and weaknesses. The methods reviewed include: Martingale, stochastic-convective, stochastic-relativist, spectral-integral, perturbative, statistical-mechanical, and generalized hydrodynamics. Within this list, we also have included a few stochastic methodologies which have been used solely to develop expressions for the dispersion tensor.  相似文献   

4.
Fundamentals of the theory of stochastic calculus and stochastic differential equations (SDE's) which are finding increasing application in water resources engineering are reviewed. The basics of probability theory, mean square calculus and the Wiener, white Gaussian and compound Poisson processes are given in preparation for a discussion of the general Itô SDE with drift, diffusion and jump discontinuity terms driven by Gaussian white noise and compound Poissionian impulses. Also discussed are stochastic integration and the derivation of moment equations via the Itô differential rule. The lierature of SDE's is reviewed with an emphasis on the more accessible sources.  相似文献   

5.
This paper gives the exact solution in terms of the Karhunen–Loève expansion to a fractional stochastic partial differential equation on the unit sphere \({\mathbb {S}}^{2} \subset {\mathbb {R}}^{3}\) with fractional Brownian motion as driving noise and with random initial condition given by a fractional stochastic Cauchy problem. A numerical approximation to the solution is given by truncating the Karhunen–Loève expansion. We show the convergence rates of the truncation errors in degree and the mean square approximation errors in time. Numerical examples using an isotropic Gaussian random field as initial condition and simulations of evolution of cosmic microwave background are given to illustrate the theoretical results.  相似文献   

6.
We shall consider in this article a general class of stochastic PDE which in particular covers the Zakai equation of nonlinear filtering and natural formulations of distributed systems involving control variables.We use only fixed point arguments, hence we get uniqueness results. In the case of the Zakai equation, Galerkin approximations have been considered by Pardoux (1979) to derive the existence of the solution  相似文献   

7.
Recognizing that simple watershed conceptual models such as the Nash cascade ofn equal linear reservoirs continue to be reasonable means to approximate the Instantaneous Unit Hydrograph (IUH), it is natural to accept that random errors generated by climatological variability of data used in fitting an imprecise conceptual model will produce an IUH which is random itself. It is desirable to define the random properties of the IUH in a watershed in order to have a more realistic hydrologic application of this important function. Since in this case the IUH results from a series of differential equations where one or more of the uncertain parameters is treated in stochastic terms, then the statistical properties of the IUH are best described by the solution of the corresponding Stochastic Differential Equations (SDE's). This article attempts to present a methodology to derive the IUH in a small watershed by combining a classical conceptual model with the theory of SDE's. The procedure is illustrated with the application to the Middle Thames River, Ontario, Canada, and the model is verified by the comparison of the simulated statistical measures of the IUH with the corresponding observed ones with good agreement.  相似文献   

8.
Recognizing that simple watershed conceptual models such as the Nash cascade ofn equal linear reservoirs continue to be reasonable means to approximate the Instantaneous Unit Hydrograph (IUH), it is natural to accept that random errors generated by climatological variability of data used in fitting an imprecise conceptual model will produce an IUH which is random itself. It is desirable to define the random properties of the IUH in a watershed in order to have a more realistic hydrologic application of this important function. Since in this case the IUH results from a series of differential equations where one or more of the uncertain parameters is treated in stochastic terms, then the statistical properties of the IUH are best described by the solution of the corresponding Stochastic Differential Equations (SDE's). This article attempts to present a methodology to derive the IUH in a small watershed by combining a classical conceptual model with the theory of SDE's. The procedure is illustrated with the application to the Middle Thames River, Ontario, Canada, and the model is verified by the comparison of the simulated statistical measures of the IUH with the corresponding observed ones with good agreement.  相似文献   

9.
10.
Traditional Ensemble Kalman Filter (EnKF) data assimilation requires computationally intensive Monte Carlo (MC) sampling, which suffers from filter inbreeding unless the number of simulations is large. Recently we proposed an alternative EnKF groundwater-data assimilation method that obviates the need for sampling and is free of inbreeding issues. In our new approach, theoretical ensemble moments are approximated directly by solving a system of corresponding stochastic groundwater flow equations. Like MC-based EnKF, our moment equations (ME) approach allows Bayesian updating of system states and parameters in real-time as new data become available. Here we compare the performances and accuracies of the two approaches on two-dimensional transient groundwater flow toward a well pumping water in a synthetic, randomly heterogeneous confined aquifer subject to prescribed head and flux boundary conditions.  相似文献   

11.
对比分析了随机结构动力可靠度计算的三种估计算法.渐进展开法是基于Laplace算法对概率积分进行渐进估计的,此法通过计算最大被积分式值对应点,并将其代入概率积分的渐进估计表达式求解失效概率.由于概率积分的主要贡献来自于最大被积分式值对应点的周围,因此本文的重要抽样法假定重要抽样函数的最大似然值等于最大被积分式值对应点值.极值分布-泰勒展开法首先通过结构随机参数的极值分布函数给出失效概率的表达式,随后利用泰勒展开法对失效概率进行估计,其中采用中心差分法对极值分布函数的梯度进行估算.最后应用三种算法和Monte Carlo法对受高斯白噪声激励作用的单自由度随机结构进行了计算,结果表明三种方法不但运算简便,而且对比Monte Carlo法计算效率有显著提高.  相似文献   

12.
Droughts and floods are two opposite but related hydrological events. They both lie at the extremes of rainfall intensity when the period of that intensity is measured over long intervals. This paper presents a new concept based on stochastic calculus to assess the risk of both droughts and floods. An extended definition of rainfall intensity is applied to point rainfall to simultaneously deal with high intensity storms and dry spells. The mean-reverting Ornstein–Uhlenbeck process, which is a stochastic differential equation model, simulates the behavior of point rainfall evolving not over time, but instead with cumulative rainfall depth. Coefficients of the polynomial functions that approximate the model parameters are identified from observed raingauge data using the least squares method. The probability that neither drought nor flood occurs until the cumulative rainfall depth reaches a given value requires solving a Dirichlet problem for the backward Kolmogorov equation associated with the stochastic differential equation. A numerical model is developed to compute that probability, using the finite element method with an effective upwind discretization scheme. Applicability of the model is demonstrated at three raingauge sites located in Ghana, where rainfed subsistence farming is the dominant practice in a variety of tropical climates.  相似文献   

13.
14.
The dynamics of water within the unsaturated root zone of the soil are represented by a pair of stochastic differential equations (SDE's), one representing the so-called surplus state of the moisture and the other the deficit condition. The inputs to the model are the climatically controlled random infiltration events and evapotranspiration which are modeled as a compound Poisson process and a Wiener (Brownian motion) process, respectively.The solutions to these SDE's are not in close-form but sample functions are obtained by numerical integration. The moment properties of the soil moisture evolution process have also been derived analytically including the mean, variance, covariance and autocorrelation functions.To illustrate the model, climatic parameters representing the surplus and deficit cases and properties of clay loam soil have been used to numerically derived the corresponding sample functions. With proper selection of all the parameters, physically realistic sample trajectories can be obtained for the model.  相似文献   

15.
16.
Many problems in hydraulics and hydrology are described by linear, time dependent partial differential equations, linearity being, of course, an assumption based on necessity.Solutions to such equations have been obtained in the past based purely on deterministic consideration. The derivation of such a solution requires that the initial conditions, the boundary conditions, and the parameters contained within the equations be stipulated in exact terms. It is obvious that the solution so derived is a function of these specified, values.There are at least four ways in which randomness enters the problem. i) the random initial value problem; ii) the random boundary value problem; iii) the random forcing problem when the non-homogeneous part becomes random and iv) the random parameter problem.Such randomness is inherent in the environment surrounding the system, the environment being endowed with a large number of degrees of freedom.This paper considers the problem of groundwater flow in a phreatic aquifer fed by rainfall. The goveming equations are linear second order partial differential equations. Explicit form solutions to this randomly forced equation have been derived in well defined regular boundaries. The paper also provides a derivation of low order moment equations. It contains a discussion on the parameter estimation problem for stochastic partial differential equations.  相似文献   

17.
18.
We present a nonlinear stochastic inverse algorithm that allows conditioning estimates of transient hydraulic heads, fluxes and their associated uncertainty on information about hydraulic conductivity (K) and hydraulic head (h  ) data collected in a randomly heterogeneous confined aquifer. Our algorithm is based on Laplace-transformed recursive finite-element approximations of exact nonlocal first and second conditional stochastic moment equations of transient flow. It makes it possible to estimate jointly spatial variations in natural log-conductivity (Y=lnK)(Y=lnK), the parameters of its underlying variogram, and the variance–covariance of these estimates. Log-conductivity is parameterized geostatistically based on measured values at discrete locations and unknown values at discrete “pilot points”. Whereas prior values of Y at pilot point are obtained by generalized kriging, posterior estimates at pilot points are obtained through a maximum likelihood fit of computed and measured transient heads. These posterior estimates are then projected onto the computational grid by kriging. Optionally, the maximum likelihood function may include a regularization term reflecting prior information about Y. The relative weight assigned to this term is evaluated separately from other model parameters to avoid bias and instability. We illustrate and explore our algorithm by means of a synthetic example involving a pumping well. We find that whereas Y and h can be reproduced quite well with parameters estimated on the basis of zero-order mean flow equations, all model quality criteria identify the second-order results as being superior to zero-order results. Identifying the weight of the regularization term and variogram parameters can be done with much lesser ambiguity based on second- than on zero-order results. A second-order model is required to compute predictive error variances of hydraulic head (and flux) a posteriori. Conditioning the inversion jointly on conductivity and hydraulic head data results in lesser predictive uncertainty than conditioning on conductivity or head data alone.  相似文献   

19.
The complete mathematical model for the non steady hydrodynamic circulation due to wind, waves and density gradients in a coastal area or a lake is solved by the combined application of the weighted residuals—Galerkin method and the finite difference method. The computation of u and v velocity components in x, y, z, t space is achieved through expansion in series of base functions times undetermined coefficients over the depth. The computation of these coefficients giving the vertical variation of the velocity is done by the Galerkin method. The rapid convergence of this procedure permits a quick and economic evaluation of 3-D flows on a 2-D grid (in x, y space). The capabilities of the method were demonstrated by applying it to a tidal flow in an estuary.  相似文献   

20.
The steady state two dimensional groundwater flow equation with constant transmissivities was studied by Whittle in 1954 as a stochastic Laplace equation. He showed that the correlation function consisted of a modified Bessel function of the second kind, order 1, multiplied by its argument. This paper uses this pioneering work of Whittle to fit an aquifer head field to unequally spaced observations by maximum likelihood. Observational error is also included in the model. Both the isotropic and anisotropic cases are considered. The fitted field is then calculated on a two dimensional grid together with its standard deviation. The method is closely related to the use of two-dimensional splines for fitting surfaces to irregularly spaced observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号