首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields ≤1013 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.  相似文献   

2.
年轻脉冲星多处于超新星遗迹(Supernova Remnant, SNR)中, 其分为转动供能脉冲星(Rotation-powered SNR-PSR)、磁星(Magnetar)和中心致密天体(Central Compact Object, CCO), 这3类年轻脉冲星有着不同的自旋周期及磁场强度分布. % 其中, 遗迹磁星(SNR-Magnetar)的平均自旋周期比转动供能遗迹脉冲星大近一个量级, 平均磁场强度高近两个量级. % 同时, 中心致密天体比转动供能遗迹脉冲星的平均磁场强度低近两个量级. % 这3类年轻脉冲星不同的物理性质, 可能源于其不同的前身星或不同的超新星爆发过程, 也可能源于其中子星诞生后的不同演化过程. % 此外, 转动供能遗迹脉冲星比年轻的转动供能非遗迹脉冲星具有更快的平均自旋周期、更大的平均磁场强度和更短的平均特征年龄. % 这暗示新诞生的中子星经时间约为$10^5$--$10^6$yr的演化过程, 其自旋速度将减小近一半, 同时其磁场强度也将衰减近一半.  相似文献   

3.
The accretion-induced neutron star (NS) magnetic field evolution is studied through considering the accretion flow to drag the field lines aside and dilute the polar-field strength, and as a result the equatorial field strength increases, which is buried inside the crust on account of the accretion-induced global compression of star crust. The main conclusions of model are as follows: (i) the polar field decays with increase in the accreted mass; (ii) the bottom magnetic field strength of about 108 G can occur when the NS magnetosphere radius approaches the star radius, and it depends on the accretion rate as     ; and (iii) the NS magnetosphere radius decreases with accretion until it reaches the star radius, and its evolution is little influenced by the initial field and the accretion rate after accreting  ∼0.01 M  , which implies that the magnetosphere radii of NSs in low-mass X-ray binaries would be homogeneous if they accreted the comparable masses. As an extension, the physical effects of the possible strong magnetic zone in the X-ray NSs and recycled pulsars are discussed. Moreover, the strong magnetic fields in the binary pulsars PSR 1831−00 and PSR 1718−19 after accreting about  0.5 M  in the binary-accretion phase,  8.7 × 1010  and  1.28 × 1012 G  , respectively, can be explained through considering the incomplete frozen flow in the polar zone. As an expectation of the model, the existence of the low magnetic field  (∼3 × 107 G)  NSs or millisecond pulsars is suggested.  相似文献   

4.
By means of the Monte Carlo method, we simulate the evolutionary distribution of accreting neutron stars (NSs) in the magnetic field versus spin period (B‐P) diagram where the accretion induced magnetic‐field decay model is exploited. The simulated results show that by mass accretion the B‐P distribution of the accreting NS would evolve along the equilibrium period line to a region with low field and short period. The B‐P distributions of the simulated accreting NSs are consistent with those of the observed millisecond pulsars (MSPs) after accretion of ∼ 0.1–0.2 M⊙. We also test the effects of the initial magnetic field and the spin period on the evolved B‐P distribution of the accreting NSs. It is shown that the evolved distributions of the simulated samples are independent of the selection of the initial condition when the NS magnetic field decays to a value less than ∼1010 G. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Disks originating from supernova fallback have been suggested to surround young neutron stars. Interaction between the disk and the magnetic field of the neutron star may considerably influence the evolution of the star through the so called propeller effect. There are many controversies about the efficiency of the propeller mechanism proposed in the literature. We investigate the fallback disk-involved spin-down of young pulsars. By comparing the simulated and measured results of pulsar evolution, we present some possible constraints on the propeller torques exerted by the disks on neutron stars.  相似文献   

6.
At present, it is widely believed that anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), rotational radio transients (RRATs), compact central objects (CCOs) in supernova remnants, and X-ray dim isolated neutron stars (XDINSs) belong to different classes of anomalous objects in which the central bodies are isolated neutron stars. Previously, we have shown that AXPs and SGRs can be described in terms of the drift model for parameters of the central neutron star typical of radio pulsars (rotation periods P ~ 0.1–1 s and surface magnetic fields B ~ 1011–1013 G). Here, we show that some of the peculiarities of the sources under consideration can be explained by their geometry (in particular, by the angle β between the rotation axis and the magnetic moment). If β ? 10° (an aligned rotator), the drift waves in the outer layers of the neutron star magnetosphere can account for the observed periodicity in the radiation. For large β (a nearly orthogonal rotator), the observed modulation of the radiation and its short bursts can be explained by mass accretion from the ambient medium (e.g., a relic disk).  相似文献   

7.
Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.  相似文献   

8.
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10^-6-10^-5M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.  相似文献   

9.
The recent BATSE observations of the spin-up and spin-down of accreting pulsars have shown that the standard formulation for the accretion torque as proposed by Ghosh &38; Lamb may need to be revised. The observations indicate alternate spin-up and spin-down phases driven by torques of similar magnitude and typically larger than the mean torque. The variations of the torque in systems such as Cen X-3 are difficult to explain in terms of changes of the mass accretion rate. The implication is that the torque does not depend on the accretion rate as in the GL model. In this paper we argue that the observed changes in the spin rate can result from stochastic transitions between two magnetospheric states. In particular, we show that intermediate magnetospheric systems are not admissible, because of a disc-induced magnetospheric instability which exists in a star–disc magnetic interaction system. This explains why torque reversal occurs in disc accreting pulsars with similar magnitudes.  相似文献   

10.
Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors relying on accretion induced collapse (AIC) of white dwarfs in binaries. Thus massive CVs (M ≥ 1.1 M) can play a vital role on binary evolution, as well as of the physical processes involved in the formation and evolution of neutron stars and their magnetic fields, and could turn into binary MSPs with different scales of orbital periods; this effect can be explained by the AIC process. This scenario also suggests that some fraction of isolated MSPs in the Galactic disk could be formed through the same channel, forming the contribution of some CVs to the single‐degenerate progenitors of Type Ia supernova. Furthermore, we have refined the statistical distribution and evolution by using updated data. This implies that the significant studies of compact objects in binary systems can benefit from the Corbet diagram.Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors re  相似文献   

11.
We systematically analyse all the available X-ray spectra of disc accreting neutron stars (atolls and millisecond pulsars) from the RXTE data base. We show that while all these have similar spectral evolution as a function of mass accretion rate, there are also subtle differences. There are two different types of hard/soft transition, those where the spectrum softens at all energies, leading to a diagonal track on a colour–colour diagram, and those where only the higher energy spectrum softens, giving a vertical track. The luminosity at which the transition occurs is correlated with this spectral behaviour, with the vertical transition at   L / L Edd∼ 0.02  while the diagonal one is at ∼0.1. Superimposed on this is the well-known hysteresis effect, but we show that classic, large-scale hysteresis occurs only in the outbursting sources, indicating that its origin is in the dramatic rate of change of mass accretion rate during the disc instability. We show that the long-term mass accretion rate correlates with the transition behaviour, and speculate that this is due to the magnetic field being able to emerge from the neutron star surface for low average mass accretion rates. While this is not strong enough to collimate the flow except in the millisecond pulsars, its presence may affect the inner accretion flow by changing the properties of the jet.  相似文献   

12.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

13.
The microquasar GRO J1655−40 has a black hole with spin angular momentum apparently misaligned to the orbital plane of its companion star. We analytically model the system with a steady-state disc warped by Lense–Thirring precession and find the time-scale for the alignment of the black hole with the binary orbit. We make detailed stellar evolution models so as to estimate the accretion rate and the lifetime of the system in this state. The secondary can be evolving at the end of the main sequence or across the Hertzsprung gap. The mass-transfer rate is typically 50 times higher in the latter case but we find that, in both the cases, the lifetime of the mass-transfer state is at most a few times the alignment time-scale. The fact that the black hole has not yet aligned with the orbital plane is therefore consistent with either model. We conclude that the system may or may not have been counter aligned after its supernova kick but that it is most likely to be close to alignment rather than counter alignment now.  相似文献   

14.
When double neutron star or neutron star–black hole binaries merge, the final remnant may comprise a central solar-mass black hole surrounded by a  ∼0.01–0.1 M  torus. The subsequent evolution of this disc may be responsible for short γ-ray bursts (SGRBs). A comparable amount of mass is ejected into eccentric orbits and will eventually fallback to the merger site after ∼0.01 s. In this paper, we investigate analytically the fate of the fallback matter, which may provide a luminous signal long after the disc is exhausted. We find that matter in the eccentric tail returns at a super-Eddington rate and eventually (≳0.1 s) is unable to cool via neutrino emission and accrete all the way to the black hole. Therefore, contrary to previous claims, our analysis suggests that fallback matter is not an efficient source of late-time accretion power and unlikely to cause the late-flaring activity observed in SGRB afterglows. The fallback matter rather forms a radiation-driven wind or a bound atmosphere. In both the cases, the emitting plasma is very opaque and photons are released with a degraded energy in the X-ray band. We therefore suggest that compact binary mergers could be followed by an 'X-ray renaissance', as late as several days to weeks after the merger. This might be observed by the next generation of X-ray detectors.  相似文献   

15.
16.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

18.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

19.
The role of binary progenitors of neutron stars (NSs) in the apparent distribution of space velocities and spin–velocity alignment observed in young pulsars is studied. We performed a Monte Carlo synthesis of pulsar populations originated from single and binary stars with different assumptions about the NS natal kick (kick–spin alignment, kick amplitude and kick reduction in electron-capture supernovae in binary progenitors with initial main-sequence masses from the range  8–11 M  which experienced mass exchange due to Roche lobe overflow). The calculated spin–velocity alignment in pulsars is compared with data inferred from radio polarization measurements. The observed space velocity of pulsars is found to be mostly affected by the natal kick velocity form and its amplitude; the fraction of binaries is not important here for reasonably large kicks. The natal kick–spin alignment is found to strongly affect the spin–velocity correlation of pulsars. Comparison with the observed pulsar spin–velocity angles favours a sizeable fraction of binary progenitors and kick–spin angles  ∼5°–20°  .  相似文献   

20.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号