首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By studying the data from the worldwide neutron monitor network the spectra of most of the solar proton events in cycles 19–20 have been determined. These spectra are best represented by a power law with an upper cutoff R m . This holds over a wide range in energy or rigidity. For the events examined R m had values between 3 GV and 20 GV. It is shown that there is no correlation between R m and the amplitude of the events.The equation describing continuous particle acceleration in a confining medium is solved in the non-stationary case. This solution shows the existence of a cutoff in the spectrum, and is compared with the experimental results in connection with the problem of particle acceleration time.Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.  相似文献   

2.
Yurovsky  Yu. 《Solar physics》2000,194(1):151-154
We reanalyze histograms of durations and frequency bandwidths of individual bursts during solar radio noise storms. We find that the well-known maxima these histograms exhibit towards small durations and bandwidths actually correspond to a constant burst emission probability over the whole range of observed durations and bandwidths.  相似文献   

3.
A. Hewish 《Solar physics》1988,116(1):195-198
A recent study of associations between geomagnetic storms and solar phenomena has found more associations with solar flares than with coronal holes (Garcia and Dryer, 1987). This disagrees with observations of earthbound transients obtained from IPS imaging which showed that nearly all geomagnetically effective disturbances originated from coronal holes at low latitudes. The discrepancy has arisen because the former study failed to take into account the large angular extent of transient eruptions from coronal holes. It is highly probable that the intense geomagnetic storm of February 1986, discussed by Garcia and Dryer, was caused by a low-latitude coronal hole which was present at that time. This answers their question concerning moderately strong flares that apparently cause major storms, while much larger flares often do not; flares may sometimes be associated with eruptions from coronal holes, but only as peripheral events.  相似文献   

4.
This paper presents directional low energy solar proton measurements together with inter-planetary magnetic field measurements. Propagation of 1 to 13 MeV solar protons is discussed in terms of the relative importance of field-aligned streaming compared to convection of the proton population in the solar wind. Evidence is presented to show that protons associated with the January 24, 1969 solar flare were stored near the Sun for at least 90 minutes. It is also shown that under favourable conditions solar protons can be accelerated near the Earth's bow shock. The decay of solar protons is shown to be mainly convective; however, there are indications that in smooth field regimes convection of 1 MeV solar protons can be greatly reduced. Finally, it is pointed out that the effect of adiabatic deceleration can be quite important.  相似文献   

5.
Particle fluxes and pitch angle distributions of relativistic solar protons at Earth's orbit have been determined by Monte Carlo calculations. The analysis covers two hours after the release of the particles from the Sun and total of 8 × 106 particle trajectories were simulated. The pitch angle scattering was assumed to be isotropic and the scattering mean free path was varied from 0.1 to 4 AU.The intensity-time profiles after a delta-like injection from the Sun show that the interplanetary propagation is clearly non-diffusive at scattering mean-free paths above 0.5 AU. All pitch angle distributions have a steady minimum at 90 °, and they become similar about 20 min after the arrival of first particles.As an application, the solar injection profile and the interplanetary scattering mean-free path of particles that gave rise to the GLE on 7 May, 1978 were determined. In contrast to the values of 3–5 AU published by other authors, the average scattering mean-free path was found to be about 1 AU.  相似文献   

6.
The S 79 experiment on board of the HEOS-A1 European Satellite has been designed to electrons detection whose kinetic energies should be equal or greater than 7.5 MeV. From December 1968 to July 1970, 11 events were observed.Their main characteristics are described in this article. Two different categories of events may be sorted out from these observations. The propagation conditions in the interplanetary space are now discussed to find out a possible interpretation.  相似文献   

7.
High angular-resolution measurements of directional fluxes of solar particles in space have been obtained with detectors aboard OGO-5 during the cosmic ray event of 18 November 1968. This is the only case on record for which sharply-defined directional observations of protons and electrons covering a wide rigidity range (0.3 MV to 1.5 GV) are available.The satellite experiment provided data for determining pitch-angle distributions with respect to the direction of the local interplanetary magnetic field lines during the lengthy highly anisotropic phase of the event. It was found that the unidirectional differential intensities j(θ) of 3- to 25-MeV protons varied in accordance with the relationship j(θ) = b0 + b1cosθ + b2cos2θ, where b0 and b1 ? 0, and b2, is positive, zero or negative. Soon after onset, 79–266-keV electrons arriving from the direction of the Sun displayed an anisotropic component with the intensity varying as cos θ. Later, a double-peaked distribution appeared at the lower energies, whereas the flux at the upper end of the range covered by the experiment became isotropic. These results have been interpreted in the light of the temporal flux profiles and the state of the interplanetary medium.The observation of the unusually large and long-lasting anisotropies lead to several conclusions including: (1) If injection of the solar particles was instantaneous, the diffusion coefficient was either constant or increasing with distance from the Sun. (2) If the solar source emitted particles over an extended period, and there is evidence to that effect, there was weak scattering in the region between the Sun and the Earth and a strong scattering region beyond the Earth's orbit. (3) Solar electrons were stored near the Sun. (4) The observed angular distribution of 200-MV protons in the magnetosheath was in good agreement with that deduced in an earlier analysis of polar orbiting satellite observations and trajectory calculations.  相似文献   

8.
Nuclear de-excitation γ-ray lines yield diagnostic information on ion acceleration in solar flares. Deductions using these lines of flare site ion distributions generally assume that all accelerated ion species have energy distributions of the same form. Particularly high total energy contents for fast ions result. Here we show how this assumption may be relaxed. Sufficiently precise measurements of a key set of lines may be combined to deduce separately the distributions of the fast protons and α-particles that produce the narrow de-excitation lines. We apply the resulting procedure to sets of line fluences obtained previously from SMM/GRS data. Interpretations of these data appear plausible in which comparatively small numbers of α particles are accelerated into energy distributions significantly harder than those found for protons.  相似文献   

9.
10.
Measurements of dayglow radiance of O2(1Δg) and OH(7,2) bands are reported. Ground based photometers were used to monitor zenith radiance of 1270 and 694 nm emissions during the total solar eclipse of 16 February 1980. Altitude distribution of 1270 nm intensity was derived from ground based observations. A set of altitude distributions of O2(1Δg) were thus obtained throughout the eclipse. These altitude distributions were converted into ozone distributions using the rate equations for formation and loss of ozone and O2(1Δg) molecules. Results indicate an increase in the ozone concentration at mid-eclipse. OH(7,2) emission did not show enhancement during totality. This may mean that there was no increase in OH concentration during the eclipse.  相似文献   

11.
It is shown that by monitoring time variations of the solar wind-magnetosphere energy coupling function ?(t) upstream of the solar wind, one should be able to predict fairly accurately the growth and decay of individual magnetospheric substorms and storms.  相似文献   

12.
The fluxes and penetration boundaries of solar energetic particles on the CORONAS-F satellite during October 2003 superstorms are compared with the riometric absorption measurements on a worldwide network of riometers. The dynamics of the polar cap boundaries is investigated at various phases of magnetic storms. The dependence of absorption on time of the day and on solar proton spectrum is calculated at various phases of a solar energetic particle event.  相似文献   

13.
Heating of the ambient plasma by high energy electrons in solar flares is discussed. It is shown that for large flares the heating is enough to produce a thermal plasma of a temperature up to a few times of 107K rapidly in the initial phase of the flares. Thus thermal bremsstrahlung in addition to non-thermal bremsstrahlung should be considered for the X-ray emission of solar flares in the initial phase.NAS-NRC Resident Research Associate.  相似文献   

14.
Propagation of flare protons in the solar atmosphere   总被引:1,自引:0,他引:1  
The velocity dispersion for a large number of solar proton events is analyzed in the energy regime of 10–60 MeV. It is found for all events that the time from the flare to particle maximum t m is well represented by a sum of two components. The first component which is energy independent describes the propagation in the solar atmosphere, the second component describes the propagation in the interplanetary medium giving a velocity dispersion v × t m = const. The additional study of time intensity profiles, onset times, and multispaceprobe observations reveals that the propagation in the solar atmosphere consists of three processes: (1) A rapid transport process in the initial ( 1 h) phase after the event fills up a fast propagation region (FPR), which may extend up to 60° from the flare site and which is tentatively identified with a large unipolar magnetic cell as seen on H synoptic charts, (2) a large-scale drift process which is energy independent with drift velocities v D in the range 1° v D 4°h-1, and simultaneously (3) a diffusion process which yields the general broadening of the intensity time profiles for eastern hemisphere events, which is, however, of less importance than previously assumed.  相似文献   

15.
Solar proton observations by the ESRO IA satellite are presented for the November 18, 1968 event. The time history of proton influx over the polar regions, showing a clear north/south asymmetry during the onset phase of the event, is presented.  相似文献   

16.
Alexander  P.  Valdés-Galicia  J.F. 《Solar physics》1998,183(2):407-418
It has been suggested that in the interplanetary medium Alfvén waves may be significantly amplified or damped during large solar proton events. This implies the increase or decrease of the ambient magnetic fluctuations in concurrence with the presence of the streaming particles, that we have analysed in a first study at times of eight proton events observed by Helios spacecraft (Valdés-Galicia and Alexander, 1997). However, it is not possible with interplanetary magnetic field measurements only to distinguish between waves moving away or towards the Sun in the frame of reference of the spacecraft. Plasma data for these eight events have now been made available to us and hence the energetic content of inward and outward propagating waves may be found, which is an important aid in our search for signatures left by the energetic protons. In the present work we incorporate the new information into the analyses of those events that in our first study showed more favourable evidence and therefore try to give a more definite answer as to whether it might be observed. The new results do not reinforce the evidence of our previous work, as they seem to be mildly consistent with the presence of the proton self-generated waves in just one of the three cases studied.  相似文献   

17.
R. K. Sood 《Solar physics》1972,23(1):183-190
The Elliot model for solar flares predicts weak -ray emission from the flare region prior to large flares. A search has been made for such -radiation of energy > 50 MeV. The experiment was performed using balloon-borne detectors flown from an equatorial station during the 1967/1968 solar maximum. A number of small flares were observed, but no associated -rays were detected. A limit of 2.3 × 104 photons/cm2 s was placed on the emission from an importance 1N flare. The general lack of major solar activity during the period of the balloon flights precluded a test for the Elliot model.  相似文献   

18.
It is shown that major geomagnetic storms (¦Dst¦ > 100) tend to develop at about the time of the passage of the solar current sheet or disk at the location of the Earth, provided this passage is associated with (1) a large impulsive increase of the IMF magnitude B, (2) a negative value of the IMF angle (Theta), and (3) an increasing solar wind speed. The passage occurs in association with the 27-day rotation of the warped current disk or a temporal up-down movement of the latter. The period in which ¦Dst¦/t< 0 during major storms coincides approximately with the period when the solar windmagnetosphere energy coupling function becomes 1019 erg s–1. These conclusions do not depend on the phase of the sunspot cycle.These results may be interpreted as follows: A high speed solar wind flow, originating either from flare regions or coronal holes, tends to push the solar current disk to move upward or downward for either a brief period (1 3 days) or an extended period (2 weeks). A relatively thin region of a large IMF B > 10 is often present near the moving current disk. Waves are also generated on the moving current disk, and some of them cause large changes of . A high value of is found in the region of a large IMF B near the wavy solar current disk, where has a large negative value.  相似文献   

19.
A spectral analysis of the radio noise storm (NS) fluctuations has shown that the power spectrum of any NS is not flat but hyperbolic and is satisfactorily described by the expression G(F) ~ c/F. The spectrum is monotonic and contains no components exceeding the level of statistical fluctuations, i.e., the observations reveal no steady periodic or resonant properties of the emission source. Therefore, the universally accepted assumption about the NS formation from short type I bursts is in conflict with the observations, because the spectrum of the sum of short pulses is flat, while the total energy of all short bursts with durations of the order of one second in actual NSs accounts for only 3–5% of the total energy of the burst component. The remainining 95% of the energy is emitted as long-lived bursts with durations from 1–2 to 300 s. The listed NS properties are inconsistent with the hypothesis of their emission through the action of nanoflares, because the time it takes for the bulk of the energy to be released as pulses with durations >10 s exceeds considerably the lifetime of the events called nanoflares.  相似文献   

20.
The ozone height profile in the Arctic, at the end of the winter, has been measured up to an altitude of 100 km using a combined solar occultation and 1.27 μ oxygen emission technique. The typical two layer structure has been observed with a high altitude minimum near 80 km and a maximum at 86 km. The measured concentration in this ozone bulge was 5.1 × 107cm?3, typical of that measured at 52°N for the summer months. It is suggested that this reduced ozone concentration may have been associated with a stratospheric warming event that was in progress at the time of the measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号