共查询到20条相似文献,搜索用时 0 毫秒
1.
Phase‐resolved FUV observations of three Algol‐type interacting binaries (V356 Sgr, TT Hya, and RY Per) have been made during totality with the Far Ultraviolet Spectroscopic Explorer to map the location of the hot circumstellar plasma that produces emission lines of O VI, Si III,IV, S IV, C III, and N II. Since OVI shows very little variation in profile, strength, and velocity as the disk of the secondary occults the line formation region, we conclude that the emission originates in material that has a substantial flow perpendicular to the orbital plane (perhaps a bipolar jet). The behavior of the emission lines from the moderate‐ionization species suggests that the plasma producing these emission features has a large equatorial component. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
A. Erdem E. Budding O. Demircan
. Lütfi Deirmenci
. Gülmen C. Sezer 《Astronomische Nachrichten》2005,326(5):332-337
New light curves and available times of minima of a β Lyr system EG Cep were analysed to deduce more information on the nature of the system. The main U‐shaped (O – C) variation was interpreted in terms of the mass transfer and mass loss in the system. The same variation was also considered as a part of a sinusoidal variation and thus interpreted in terms of a light‐time effect due to an unseen component in the system. New B and V light curves were analyzed with different fitting procedures, and there is general agreement that both stars must be very close to each other and to stability limits. A model that fits all the data well has a near main sequence primary and a secondary star that is overflowing matter towards it. This secondary is also reasonably close to main sequence conditions. The configuration thus appears to be a (relatively uncommon) ‘Case A’ type evolving Algol and raises interesting questions about such interactive evolution and potentially useful tests of theory. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
Orbital period variations of two neglected Algol type binaries, CC Her and XZ Aql, are studied based on all available times of minima. In the case of CC Her, it is found that the O –C curve displays a tilted sinusoidal variation with an eccentricity of 0.54 ± 0.03 and a period of 52.4 ± 0.4 yr, which can be explained by the light‐time effect due to the presence of an unseen component. The course of the orbital period change in XZ Aql appears less reliable but its O –C curve can be represented by a periodic variation with a period of 36.7 ± 0.6 yr superimposed on an upward parabola. The parabolic variation indicates a secular period increase with a rate of dP /dt = 7.1 s per century. The corresponding conservative mass transfer from less massive component to the more massive one is about 3.26 × 10–7 M⊙ yr–1. It is interesting to see that the O –C variation of CC Her displays no evidence (as upward parabola) on the mass transfer characteristic for Algols. The periodic change of the orbital period of XZ Aql, like CC Her, may be caused by the presence of the thirdbody. The lower limits of the masses of the hypothetical unseen components for CC Her and XZ Aql are found to be 2.69 M⊙ and 0.47 M⊙, respectively. The third body of CC Her should be detectable not only spectroscopically but also photoelectrically, if it exists. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main-sequence or a late-type low-mass companion, are discussed. 相似文献
5.
CCD photometry of the short-period binary stars KQ Gem and V412 Her is presented, together with some spectroscopic observations of KQ Gem. Although both systems are classified in the General Catalogue of Variable Stars as having light curves of EB/KW type, our data and analyses, involving light-curve synthesis and stellar surface imaging, show that KQ Gem is an EB system that is in marginal contact and has an enhanced bright region around the substellar point on the secondary component, whilst V412 Her is an EW system, a true contact binary with a mass ratio of 0.46 and both stars having the same surface brightness. The properties of the components of the two systems are compared with other marginal-contact and contact binaries, and a plea is repeated for more theoretical work on the mass/energy interchanges in contact binaries. 相似文献
6.
Ralph A. M. J. Wijers J. E. Pringle 《Monthly notices of the Royal Astronomical Society》1999,308(1):207-220
Precessing accretion discs have long been suggested as explanations for the long periods observed in a variety of X-ray binaries, most notably Her X-1/HZ Her. We show that an instability of the response of the disc to the radiation reaction force from the illumination by the central source can cause the disc to tilt out of the orbital plane and precess in something like the required manner. The rate of precession and disc tilt obtained for realistic values of system parameters compare favourably with the known body of data on X-ray binaries with long periods. We explore other possible types of behaviour than steadily precessing discs that might be observable in systems with somewhat different parameters. At high luminosities, the inner disc tilts through more than 90°, i.e., it rotates counter to the usual direction, which may explain the torque reversals in systems such as 4U 1626−67. 相似文献
7.
8.
9.
10.
F. Soydugan 《Astronomische Nachrichten》2008,329(6):587-595
An investigation of the orbital period changes of the neglected eclipsing binaries, RY Aqr, SZ Her, RV Lyr and V913 Oph, is presented based on all published minima times. Although the explanation of magnetic activity on the surface of the secondaries of the studied Algols is still open, the preferred light‐time effect due to the unseen components around the systems seems more plausible in explaining the tilted sinusoidal variations with relatively high‐amplitudes. The minimal mass values of possible tertiary components have been estimated to be about 1.06, 0.25, 0.78 and 2.85 M⊙ for RY Aqr, SZ Her, RV Lyr and V913 Oph, respectively and the results indicate that their contributions to the total light of the eclipsing pairs are measurable with high accuracy photometric and spectroscopic data, if they exist. Applegate's (1992) model has been discussed as an alternative mechanism assuming that the cooler components have magnetic cycles. It is found that the model parameters of RY Aqr and V913 Oph are consistent with the required values in Applegate's model. In addition to the first detailed orbital study on these systems, a statistical survey on the character of the O – C variations of classical Algols has revealed that about 50 percent of the systems show cyclic behavior. This means that the presence of possible third bodies around classical Algols should be tested with careful analysis using new data. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
The connection between orbital period modulation and magnetic activity in close binaries is reviewed with an emphasis on the comparison between observational data for RS CVn systems and recently proposed theoretical models. The orbital period changes occurring on timescales of the order of a few decades can be accounted for by means of a standing torsional Alfven wave in the convection zone of the magnetically active components of such systems. Two resonant excitation mechanisms based on the coupling between the wave and an αΩ dynamo are discussed from a qualitative point of view. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
V. Urpin U. Geppert & D. Konenkov 《Monthly notices of the Royal Astronomical Society》1998,295(4):907-920
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars. 相似文献
13.
Jia-Jia He Sheng-Bang Qian Boonrucksar Soonthornthum Amornrat Aungwerojwit Niang-Ping Liu Thawicharat Sarotsakulchai 《天文和天体物理学研究(英文版)》2019,(4):77-88
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary. 相似文献
14.
Superhumps in low-mass X-ray binaries 总被引:1,自引:0,他引:1
C. A. Haswell A. R. King J. R. Murray P. A. Charles 《Monthly notices of the Royal Astronomical Society》2001,321(3):475-480
We propose a mechanism for the superhump modulations observed in optical photometry of at least two black-hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However, the mechanism for superhump luminosity variations in low-mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelmingly dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10 s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs. 相似文献
15.
16.
17.
Orbital period variations of the Algol-type eclipsing binary, VW Hydrae, are analyzed based on one newly determined eclipse time and the other times of light minima collected from the literature. It is discovered that the orbital period shows a continuous increase at a rate of dP/dt = +6.34×10-7 d yr-1 while it undergoes a cyclic change with an amplitude of 0.0639 d and a period of 51.5 yr. After the long-term period increase and the large-amphtude period oscillation were subtracted from the O-C curve, the residuals of the photoelectric and CCD data indicate a small-amplitude cyclic variation with a period of 8.75 yr and a small amplitude of 0.0048d. The continuous period increase indicates a conservative mass transfer at a rate of dM2/dt = 7.89×10-8 M⊙ yr-1 from the secondary to the primary. The period increase may be caused by a combination of the mass transfer from the secondary to the primary and the angular momentum transfer from the binary system to the circumbinary disk. The two cyclic period oscillations can be explained by light-travel time effects via the presence of additional bodies. The small-amplitude periodic change indicates the existence of a less massive component with mass M3 > 0.53 M⊙, while the large-amplitude one is caused by the presence of a more massive component with mass M4 > 2.84 M⊙. The ultraviolet source in the system reported by Kviz & Rufener (1987) may be one of the additional components, and it is possible that the more massive one may be an unseen neutron star or black hole. The rapid period increase and the possibility of the presence of two additional components in the binary make it a very interesting system to study. New photometric and high-resolution spectroscopic observations and a detailed investigation of those data are required in the future. 相似文献
18.
19.
B. Willems 《Monthly notices of the Royal Astronomical Society》2003,346(3):968-976
The parameter space favourable for the resonant excitation of free oscillation modes by dynamic tides in close binary components is explored using qualitative considerations to estimate the order of magnitude of the tidal force and the frequency range covered by the tidally induced oscillations. The investigation is valid for slowly rotating stars with masses in the interval between 2 and 20 M⊙ , and an evolutionary stage ranging from the beginning to the end of the main sequence. Oscillation modes with eigenfrequencies of the order of five times the inverse of the dynamical time-scale τdyn of the star, i.e. the lowest-order p -modes, the f -mode and the lowest-order g + -modes, are found to be outside the favourable parameter space since their resonant excitation requires orbital eccentricities that are too high for the binary to stay detached when the components pass through the periastron of their relative orbit. Resonances between dynamic tides and g + -modes with frequencies of the order of half of the inverse of the dynamical time-scale of the star on the other hand are found to be favourable for orbital periods up to ∼200τdyn , provided that the binary mass ratio q is larger than 1/3, and the orbital eccentricity e is larger than ∼0.25. This favourable range comes down to orbital periods of up to 5–12 d in the case of 2–20 M⊙ zero-age main-sequence binary components, and orbital periods of up to 21–70 d in the case of terminal main-sequence binary components. 相似文献
20.
Belinda Kalomeni E. Rennan PekÜnlÜ Kadri Yakut 《Astrophysics and Space Science》2005,296(1-4):477-480
In this study, we present a photometric study of AM Her, a prototype of a class of magnetic CVs. Optical photometry of AM
Her was obtained using the Russian–Turkish 1.5 m telescope at TüBİTAK National Observatory (TUG) in August 2003. The R band light curve of the system shows two maxima and two minima during one orbital cycle. In both observing nights the star
showed flickering at a significant level. The measured flickering time scale is about 5 min. 相似文献