首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From radial velocities determined in high signal-to-noise digital spectra, we report the discovery that the brightest component of the binary system HD 150136 is of spectral type O3. We also present the first double-lined orbital solution for this binary. Our radial velocities confirm the previously published spectroscopic orbital period of 2.6 d. He  ii absorptions appear double at quadratures, but single lines of N  v and N  iv visible in our spectra define a radial velocity orbit of higher semi-amplitude for the primary component than do the He  ii lines. From our orbital analysis, we obtain minimum masses for the binary components of 27 and  18 M  . The neutral He absorptions apparently do not follow the orbital motion of any of the binary components, thus they most probably arise in a third star in the system.  相似文献   

2.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

3.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

4.
We present new radial velocities of the high‐mass X‐ray binary star 4U 2206+54 based on optical spectra obtained with the Coudé spectrograph at the 2 m RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011–July 2013. The radial velocity curve of the He I δ6678 Å line is modeled with an orbital period Porb = 9.568 d and an eccentricity of e = 0.3. These new measurements of the radial velocity resolve the disagreements of the orbital period discussions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a study of optical spectra of the Wolf–Rayet star AzV 336a (=SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several Observatories between 1988 and 2001. We find SMC WR7 to be a double-lined WN+O6 spectroscopic binary with an orbital period of 19.56 d. The radial velocities of the He absorption lines of the O6 component and the strong He  ii emission at λ 4686 Å of the WN component describe anti-phased orbital motions. However, they show a small phase shift of ∼1 d. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of He  ii emission is twice that of the absorption lines. The binary components have fairly high minimum masses, ∼18 and 34 M for the WN and O6 components, respectively.  相似文献   

6.
We introduce a new method to derive the orbital parameters of spectroscopic bi-nary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhe's.  相似文献   

7.
New optical spectroscopy of the high-mass X-ray binary microquasar LS I +61 303 is presented. Eccentric orbital fits to our radial velocity measurements yield updated orbital parameters in good agreement with previous work. Our orbital solution indicates that the periastron passage occurs at radio phase 0.23 and the X-ray/radio outbursts are triggered 2.5–4 d after the compact star passage. The spectrum of the optical star is consistent with a B0 V spectral type and contributes ∼65 per cent of the total light, the remainder being the result of emission by a circumstellar disc. We also measure the projected rotational velocity to be   v sin  i ≃ 113 km s−1  .  相似文献   

8.
o And is one of the most frequently observed Be stars, both in photometry and spectroscopy. It is a multiple system of at least four stars (a Be star, a close binary of spectral types B7 and B8, and an A star). For over a century, numerous observers report a highly variable spectrum, photometric changes, and a substantial range of radial velocity. The star has changed back and forth between a shell-type and a normal B-type star. The last emission phase started in 1992 and ended in 2000. Analysis of the dynamical spectra at spectral lines Mg II 4481 Å and He I 6678 Å and radial velocity curves shows that the two binary components can be resolved. We decomposed the triple star spectra and computed orbital parameters of the binary companion using the KOREL code for spectrum disentangling.  相似文献   

9.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

10.
We report spectral time series of the late O-type runaway supergiant HD 188209. Radial velocity variations of photospheric absorption lines with a possible quasi-period of ∼6.4 d have been detected in high-resolution echelle spectra. Night-to-night variations in the position and strength of the central emission reversal of the H α profile occurring over ill-defined time-scales have been observed. The fundamental parameters of the star are derived using state-of-the-art plane-parallel and unified non-LTE model atmospheres, the latter including the mass-loss rate. The derived helium abundance is moderately enhanced with respect to solar, and the stellar masses are lower than those predicted by the evolutionary models. The binary nature of this star is not suggested either from Hipparcos photometry or from radial velocity curves.  相似文献   

11.
We have obtained I -band photometry of the neutron star X-ray transient Aql X-1 during quiescence. We find a periodicity at 2.487 cycles d−1, which we interpret as twice the orbital frequency (19.30±0.05 h). Folding the data on the orbital period, we model the light-curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20°–30° (90 per cent confidence) and also determine the 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 and 50 km s−1, respectively.  相似文献   

12.
Retrieval of orbital parameters of extrasolar planets poses considerable statistical challenges. Due to sparse sampling, measurement errors, parameters degeneracy and modelling limitations, there are no unique values of basic parameters, such as period and eccentricity. Here, we estimate the orbital parameters from radial velocity data in a Bayesian framework by utilizing Markov Chain Monte Carlo (MCMC) simulations with the Metropolis–Hastings algorithm. We follow a methodology recently proposed by Gregory and Ford. Our implementation of MCMC is based on the object-oriented approach outlined by Graves. We make our resulting code, exofit , publicly available with this paper. It can search for either one or two planets as illustrated on mock data. As an example we re-analysed the orbital solution of companions to HD 187085 and HD 159868 from the published radial velocity data. We confirm the degeneracy reported for orbital parameters of the companion to HD 187085, and show that a low-eccentricity orbit is more probable for this planet. For HD 159868, we obtained slightly different orbital solution and a relatively high 'noise' factor indicating the presence of an unaccounted signal in the radial velocity data. exofit is designed in such a way that it can be extended for a variety of probability models, including different Bayesian priors.  相似文献   

13.
We present our second paper describing multiwaveband time-resolved spectroscopy of WZ Sge. We analyse the evolution of both optical and IR emission lines throughout the orbital period and find evidence, in the Balmer lines, for an optically thin accretion disc and an optically thick hotspot. Optical and IR emission lines are used to compute radial velocity curves. Fits to our radial velocity measurements give an internally inconsistent set of values for K 1, γ and the phase of red-to-blue crossing. We present a probable explanation for these discrepancies, and provide evidence for similar behaviour in other short orbital period dwarf novae. Selected optical and IR spectra are measured to determine the accretion disc radii. Values for the disc radii are found to be strongly dependent on the assumed WD mass and binary orbital inclination. However, the separation of the peaks in the optical emission line (i.e., an indication of the outer disc radius) has been found to be constant during all phases of the supercycle period over the last 40 years.  相似文献   

14.
We use an Artificial Neural Network (ANN) to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of four double‐lined spectroscopic binary systems HD 152218, HD 143511, HD 27149, and ER Vul, we find corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the results of a radial‐velocity study of eight southern SB1 spectroscopic binaries with composite spectra: HD 34318‐9, HD 47579‐80, HD 70442‐3, HD 74946‐7, HD 102171‐2, HD 120901‐2, HD 168701‐2, and HD 174191‐2. The observations were made at Haute‐Provence observatory with the CORAVEL instrument between 1982 and 2006. From the radial‐velocity measurements of the cool components, we derive the orbital elements of those spectroscopic binaries. Using all the available data, we obtain an estimation of the orbital inclination and the angular separation of the two components. Finally we discuss the rotation‐revolution synchronism of the cool components. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present polarimetric and spectroscopic observations of the ROSAT source RX J1141.3−6410, recently identified as a polar. The detection of circular polarization variations, with an amplitude of 10 per cent, over a 3.16-h period confirms that the system is a polar (AM Herculis star). Supporting evidence comes from the nature of the emission lines and their radial velocity variability. In addition, we observe continuum slope changes in the far-red spectral region (∼6000–8200 Å), indicative of phase dependent cyclotron emission. Polarimetric modelling at two wavelengths establishes RX J1141.3−6410 as a single-pole system, with i ∼ β ∼70°. The accretion region is extended in magnetic longitude, and is totally self-occulted for ∼25 per cent of the orbit. The radial velocity curves derived from the emission lines show a phasing with maximum blueshift occurring with Δ φ ∼0.05 of maximum intensity and circular polarisation. In addition, the broader component of the lines exhibit a substantial radial velocity phase shift with respect to the narrower component, in the sense that the broad component preceeds the narrow. This can be readily understood if the narrower component is principally a result of orbital motion of the stream material and the broad component mainly a result of streaming motion near the coupling region. The phasing of the Ca  ii near-infrared line radial velocities also supports this general picture.  相似文献   

17.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
An orbital solution for the MACHO*05:34:41.3–69:31:39 eclipsing binary system is presented, based on the published light curve and spectral data obtained with the 2.15-m telescope at CASLEO. Based on these spectroscopic observations, the binary components of this system were classified as O3 If* and O6:V respectively. The radial velocity data along with the published light curve were analysed with the Wilson–Devinney code to derive the following masses and radii for the components of this system:             and     The solution shows that the system is in overcontact, as one would expect from the derived masses and the very short orbital period (∼1.4 d).  相似文献   

19.
We report on the results of the first simultaneous X-ray ( RXTE ) and optical [South African Astronomical Observatory (SAAO)] observations of the luminous low-mass X-ray binary (LMXB) GX 9+9 in 1999 August. The high-speed optical photometry revealed an orbital period of 4.1958 h and confirmed previous observations, but with greater precision. No X-ray modulation was found at the orbital period. On shorter time-scales, a possible 1.4-h variability was found in the optical light curves which might be related to the MHz quasi-periodic oscillations seen in other LMXBs. We do not find any significant X-ray/optical correlation in the light curves. In X-rays, the colour–colour and hardness-intensity diagrams indicate that the source shows characteristics of an atoll source in the upper banana state, with a correlation between intensity and spectral hardness. Time-resolved X-ray spectroscopy suggests that two-component spectral models give a reasonable fit to the X-ray emission. Such models consist of a blackbody component which can be interpreted as the emission from an optically thick accretion disc or an optically thick boundary layer, and a hard Comptonized component for an extended corona.  相似文献   

20.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号