首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This note critically examines the relative importance of several effects which influence the diurnal variation of atomic hydrogen abundance near the critical level.It is pointed out that the neglect of exospheric hydrogen in a recent theoretical treatment causes an overestimation of the diurnal variation at high exospheric temperatures, and an underestimation at low exospheric temperatures. The fluxes due to lateral flow are large compared to other fluxes only to the extent that the actual diurnal variation is very different from the diurnal variation corresponding to zero net lateral flow, which does not seem to be the case in the real atmosphere. Two effects which are probably important are charge exchange reactions with thermal oxygen ions, resulting in a diurnal exchange with the plasmasphere; and charge exchange reactions with high velocity protons, resulting in enhanced escape and diurnal variation.  相似文献   

2.
An analysis was performed on 29,574 densities derived from the drag of 10 satellites to determine simultaneously the parameters of the solar-activity effect in the thermosphere on the one hand, and the amplitude and shape of the diurnal-variation curve on the other. This paper reports on the study of the diurnal variation only.Although a considerable amount of smoothing is inherent in the drag method, it seemed useful to see whether we could detect any change in the shape of the diurnal-variation curve with height, latitude and solar activity. None was detected: the curve remains remarkably stable, symmetric, with a maximum at 14 hr 20 min L.S.T. and a minimum at 2 hr 20 min L.S.T. A systematic variation of the temperature range with height is observed when static models are used to derive it.  相似文献   

3.
Magnetometer studies of the periods of mid-latitude ULF pulsations have produced conflicting results on the variation of the pulsation periods with both latitude and local time. Since the mid-latitude geomagnetic field is not expected to be significantly distorted by the solar wind, the observed diurnal period variations should be determined by changes in the ambient plasma density. We have applied a physically realistic plasmasphere model to the determination of pulsation eigenperiods over a 24-h interval at L=2.3 (appropriate to Wellington, New Zealand). The resulting model pulsation eigenperiods are largest during the day, with minimum and maximum values at 05.00 and 18.00 L.T. respectively. The model predicts a general increase in the eigenperiods during the replenishment of the protonosphere after a period of geomagnetic activity.  相似文献   

4.
Characteristics of enhanced and low-amplitude cosmic-ray diurnal variation   总被引:1,自引:0,他引:1  
The occurrence of a large number of high- and low-amplitude cosmic-ray diurnal wave trains during the two solar cycles (20 and 21) over the years 1965–1990 has been examined as a function of solar activity. The high-amplitude days with the time of maximum in the 18:00 hr corotation direction do not indicate any significant correlation with solar activity. But, the low-amplitude days are inversely correlated with solar activity and the time of maximum shifts to earlier hours ( 15:00 hr direction). The slope of the power-specrum density roughly characterized by power spectral index n in the high-frequency range 3.5 x 10–5 Hz to 8.3 x 10–4 Hz (time scales of 20 min to 8 hr) is different for the two classes of events. A suggestion is made that the enhanced and low-amplitude cosmic-ray diurnal variations are produced by different types of interplanetary magnetic field distributions.  相似文献   

5.
The status of laboratory spectroscopic data for exoplanet characterisation missions such as EChO is reviewed. For many molecules (eg H 2O, CO, CO 2, H\(_{3}^{+}\), O 2, O 3) the data are already available. For the other species work is actively in progress constructing this data. Much of the is work is being undertaken by ExoMol project (www.?exomol.?com). This information can be used to construct a mission-specific spectroscopic database.  相似文献   

6.
Using ion temperature and density data at specific points and times in June 1969 provided by the OGO 6 satellite, and altitude profiles of the ion and electron temperature and concentration provided by the Arecibo radar facility over the period February 1972–April 1974, the diurnal and solar cycle variation of the charge exchange induced hydrogen escape flux was investigated. It was calculated that for low to moderate solar activity at Arecibo, the diurnal ratio of the maximum-to-minimum charge exchange induced hydrogen escape flux was approximately 6 with a peak around noon and a minimum somewhere between 0100 and 0300 h L.T. This study of a limited amount of OGO 6 and Arecibo data seems to indicate that the charge exchange induced hydrogen escape flux increases as the F10.7 flux increases for low to moderate solar activity.  相似文献   

7.
We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model’s specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are \(6.8\pm0.6~\mbox{M}_{\mathrm{J}}\) and \(1.44\pm0.04~\mbox{R}_{\mathrm{J}}\). The star has a radius of \(1.67\pm0.05~\mbox{R}_{\odot}\). Our modelling sets the mean of the orbital inclination \(i\) at \(94.35\pm0.14^{\circ}\), with the star’s mean precession angle \(\phi_{p}\)\(49.1\pm5.0^{\circ}\) and obliquity \(\theta_{o}\)\(67.9 \pm 3.0^{\circ}\), though there are known ambiguities about the sense in which such angles are measured.Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter’s data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star’s precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of \(\sim30~\mbox{deg}\). The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star’s rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it that would be expected over long periods of time.The planet has a small but detectable backwarming effect on the star, which helps to explain the difference in brightness just after transit and just before occultation eclipses. In assessing these findings it is recognized that sources of uncertainty remain, notably with possible inherent micropulsational effects, variations from other components of the multiple star, stellar activity, differential rotation and the neglect of higher order terms (than \(r_{1}^{5}\)) in the fitting function, where \(r_{1}\) is the ratio of the radius of the star to the mean orbital separation of planet and host star.  相似文献   

8.
Two-year BVRI polarimetric monitoring of the exoplanet system 51 Peg has been carried out, indicating that there is no orbital phase-dependent periodic variability in linear polarization with amplitudes greater than 0.04% in the R and I bands. The mean value of one of the Stokes parameters is statistically significant and nonzero, being equal to 0.017 ± 0.004% when averaged over all the bands B, V, R, and I. The nonzero mean polarization can be due to light scattering by a circumstellar torus formed as a result of the mass loss by the hot Jupiter 51 Peg b.  相似文献   

9.
The Exoplanet Characterisation Observatory (EChO) has been studied as a space mission concept by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing over 170 relativity diverse planets if it were launched today, and the wealth of optimal targets for EChO expected to be discovered in the next 10 years by space and ground-based facilities is simply overwhelming. In addition, we build on previous molecular detectability studies to show what molecules and abundances will be detectable by EChO for a selection of real targets with various molecular compositions and abundances. EChO’s unique contribution to exoplanetary science will be in identifying the main constituents of hundreds of exoplanets in various mass/temperature regimes, meaning that we will be looking no longer at individual cases but at populations. Such a universal view is critical if we truly want to understand the processes of planet formation and evolution in various environments. In this paper we present a selection of key results. The full results are available in Online Resource 1.  相似文献   

10.
We present first results of spectroscopic observations of transiting exoplanets in the Special Astrophysical Observatory of the Russian Academy of Sciences with the Main Stellar Spectrograph of the 6-m BTA telescope. For the exoplanetWASP-32b, we detected a significant variation of intensity and equivalent width in the Hα spectral line of the parent star at the time of a transit. The equivalent width of the line during transit is by 8–10% larger than outside the planet passage. Residual intensity in the core of the line reveals the following tendency: the line is by 10–15% deeper inside transit than outside it. Observations with the long-slit spectrograph of the Crimean Astrophysical Observatory at the 2.6-m ZTSh telescope also showed a transit event in the Hα line, although, with a smaller amplitude and shape inverted in relation to the data from the 6-m telescope. While in the observations with the BTA the Hα line becomes deeper during the transit, in the ZTSh observations, the residual intensity of the Hα line decreases during the transit. Reducing and analysis of the archive data of WASP-32b observations with the HARPS spectrograph also confirm the Hα line modulation at the time of the transit. The observed data give evidence of the envelope in WASP-32b filling the Roche lobe and a comet-like tail of changing geometry and orientation relative to the observer. These changes determine different depths and shapes of the Hα spectral line at the time of transits.  相似文献   

11.
We developed a new numerical model of the Jovian magnetosphere-ionosphere coupling current system in order to investigate the effects of diurnal variation of ionospheric conductance. The conductance is determined by ion chemical processes that include the generation of hydrogen and hydrocarbon ions by solar EUV radiation and auroral electrons precipitation. The model solves the torque equations for magnetospheric plasma accelerated by the radial currents flowing along the magnetospheric equator. The conductance and magnetospheric plasma then change the field-aligned currents (FACs) and the intensity of the electric field projected onto the ionosphere. Because of the positive feedback of the ionospheric conductance on the FAC, the FAC is the maximum on the dayside and minimum just before sunrise. The power transferred from the planetary rotation is mainly consumed in the upper atmosphere on the dayside, while it is used for magnetospheric plasma acceleration in other local time (LT) sectors. Further, our simulations show that the magnetospheric plasma density and mass flux affect the temporal variation in the peak FAC density. The enhancement of the solar EUV flux by a factor of 2.4 increases the FAC density by 30%. The maximum density of the FAC is determined not only by the relationship between the precipitating electron flux and ionospheric conductance, but also by the system inertia, i.e., the inertia of the magnetospheric plasma. A theoretical analysis and numerical simulations reveal that the FAC density is in proportion to the planetary angular velocity on the dayside and to the square of the planetary angular velocity on the nightside. When the radial current at the outer boundary is fixed at values above 30 MA, as assumed in previous model studies, the peak FAC density determined at latitude 73°-74° is larger than the diurnal variable component. This result suggests large effects of this assumed radial current at the outer boundary on the system.  相似文献   

12.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

13.
The EUV (200–911 Å), FUV (912–1750 Å), and NUV (1750–3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Lyα) and NUV radiation fields regulate the atmospheric chemistry: the dissociation of H2O and CO2, the production of O2 and O3, and may determine the ultimate habitability of these worlds. Despite the importance of this information for atmospheric modeling of exoplanetary systems, the EUV/FUV/NUV radiation fields of cool (K and M dwarf) exoplanet host stars are almost completely unconstrained by observation or theory. We present observational results from a Hubble Space Telescope survey of M dwarf exoplanet host stars, highlighting the importance of realistic UV radiation fields for the formation of potential biomarker molecules, O2 and O3. We conclude by describing preliminary results on the characterization of the UV time variability of these sources.  相似文献   

14.
North/south directional telescopes operating at the surface and vertical and inclined telescopes operating at a depth of 60 m.w.e. underground in London have been employed to study changes in the cosmic ray solar diurnal variation over the past few years. In order to extend the study to the low rigidity end of the spectrum, results obtained by the NM64 neutron monitors operating at Deep River and Goose Bay in Canada have also been examined. The surface telescope data require that the full corotation amplitude of 0.59 per cent should have been observed during almost the entire solar cycle with the possible exception of the year 1965 when cosmic ray intensity was a maximum. However, the effective amplitude observed by neutron monitors during most of the solar cycle was only about 0.52 per cent and this reduction has been ascribed to the lower value of the exponent of the energy spectrum which prevails amongst the latitude sensitive primaries. Nevertheless, the upper limiting rigidity was varying during the course of the solar cycle, its value being high when solar activity was high and low when solar activity decreased. During 1965, even though the upper limiting rigidity assumed its lowest value, the free space amplitude was also diminished by a little over 10 per cent. Even though the theory of rigid corotation invoking a purely azimuthal streaming of the cosmic ray gas successfully predicts the free space amplitude, it fails to explain the phase changes observed by both types of monitor and which are quite significant. The underground data require that the component due to atmospheric temperature effects is negligibly small and that throughout the rigidity range covered by the recorder response, there is present an apparent anisotropy due to the orbital motion of the Earth around the Sun. Also the underground data roughly confirm the changes in upper limiting rigidity which were observed by the surface instruments.  相似文献   

15.
We have analyzed the sidereal diurnal variation of cosmic rays, using 620 station-years of neutron monitor data during the period 1958–1979. The sidereal variation averaged over the period for all the stations in the Northern Hemisphere is different from the corresponding variation in the Southern Hemisphere. The difference is statistically significant and can be identified with the spurious sidereal variation produced from the stationary anisotropy of solar origin, responsible for the solar semi-diurnal variation. The variation common to both hemispheres is also exceptionally significant from the statistical point of view and could be regarded as being due to a uni-directional galactic anisotropy. This variation has an amplitude of 0.0204 ± 0.0015% and a phase of 6.8 ± 0.3 h and is clearly different from that ( ~ 0.05%, 0 ~ 3 h) observed in the high rigidity region (500 ~ 104 GV). The physical meaning of the variation is discussed from the standpoint of the heliomagnetospheric modulation of galactic anisotropy.  相似文献   

16.
At present data exist showing that in some regions of the corona the polarization degree has been found to be higher than the maximum possible value determined by Thomson scattering. Besides this, there exist regions where the direction of the prevailing vibration of the E-vector does not coincide with the tangential one. This may be caused by the velocity of scattered electrons. The theory of polarization taking the velocity into account is given, and the above-mentioned data are discussed. The direction of polarization turns out to be the sensitive detector of fact electrons (for energy of 5 keV, the deviation angle 10°).Very important data about accelerated electrons on the Sun may be received from precise measurements of the corona polarization.  相似文献   

17.
Detailed numerical calculations of thermospheric heat sources and sinks are presented and their relative importance is discussed in reference to the energy balance phenomena of the neutral atmosphere. It is shown that the thermal energy available from the absorption in the Schumann-Runge continuum leading to photo-dissociation of O2 is by far the largest energy source in the lower thermosphere. Other sources of varying importance in different altitude ranges are: (1) energy from photoelectrons; (2) energy exchange from thermal plasma; (3) chemical reaction (ion-electron dissociative recombination) energy gain; (4) kinetic and dissipative energy associated with the neutral wind. The energy sinks of importance are (1) thermal conduction at the lower boundary (120km); and (2) radiative cooling of atomic oxygen.It is shown that the combined energy from processes 2–4 constitutes only a small fraction of the total energy available from photoelectrons and is in phase with the latter. These secondary sources (processes 2–4), therefore, do not constitute a significant energy source and their contribution can be simply incorporated into photoelectron energy (process 1) by defining an effective photo-ionization heating efficiency. The heating efficiencies for photo-ionization (including processes 2–4) and photo-dissociation are estimated to be 0.5 and 0.3, respectively.As the important heat input (photo-dissociation) and loss (conduction and radiation) rates are basically governed by the O2 and O densities, any diurnal or seasonal variation in these constituents at the lower boundary would have profound effects on the thermal structure of the overlying atmosphere. For this and other reasons, it is suggested that a choice of lower boundary much below 120km, e.g. near the mesopause level (90 km), should be more appropriate for general thermospheric studies.  相似文献   

18.
Dissociation and ionization of hydrogen molecules and ionization of hydrogen atoms due to extreme UV radiation from the parent star are accompanied by the formation of a concurrent photoelectron flux with excess kinetic energy. These dissociation and ionization processes are the main source of atomic and molecular ions in the thermospheres of extrasolar planets, such as the “hot Jupiter” HD 209458b. The ionization processes are the most important part of contemporary aeronomic models of planetary atmospheres in the Solar System and extrasolar systems (Johnson et al., 2008; Yelle et al., 2008). We estimate the contribution of the dissociation and ionization processes due to the stellar UV radiation and the concurrent photoelectron flux to the formation of extended ionospheres around extrasolar giant planets. As opposed to models of other researchers, we calculated the ionization rates due to the concurrent photo-electron flux for the first time. It is established that, in contrast to a widely used parametrization of the photoelectron contribution (Cecchi-Pestellini et al., 2006; 2009), the rate of secondary ionization due to the photoelectrons depends appreciably on the altitude, approaching the photoionization rate in the lower layers of the thermosphere. The calculated ionization rate in the thermosphere of the extrasolar giant planet (EGP) orbiting close to its parent star is a necessary link when modeling an aeronomic model and estimating the rate of the EGP atmospheric loss.  相似文献   

19.
Recently we have derived the equation of polarization transfer in an inhomogeneous magnetized plasma in the case where absorption is so weak that the characteristic modes can be considered to be orthogonal. We extend this investigation to the study of polarization transfer in a plasma where the characteristic polarizations need not be orthogonal. We obtain explicit expressions for the Faraday rotation tensor, the absorption tensor, the mode-coupling tensor and the tensor describing the explicit spatial variation of characteristic polarizations due to plasma inhomogeneity.  相似文献   

20.
Following the formalism on the polarization transfer equation presented recently by the same authors, solutions to this transfer equation under several special cases of interest are discussed in this paper. Analytic solutions for the Stokes parameters for several special cases of interest are given, and numerical solutions to these parameters for arbitrary propagation direction and two types of inhomogeneity of the medium are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号