首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1′. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ΔG, activation energy E a, entropy of activation ΔS and enthalpy of activation ΔH for the Fe3+ species in amethyst. In addition, magnetic susceptibilities (χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie–Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.  相似文献   

2.
Samples of natural sodalite, Na8Al6Si6O24Cl2, submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500°C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500°C for 30 min and then irradiated with γ doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445°C. A correlation between the EPR g = 2.01132 line and the 365°C TL peak was observed. A TL model is proposed in which a Na+ ion acts as a charge compensator when an Al3+ ion replaces a Si4+ lattice ion. The γ ray destruction of the Al–Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al3+ ion.  相似文献   

3.
Natural specimens of green gemological euclase (chemical formula BeAlSiO4(OH)) from Brazil were investigated by electron paramagnetic resonance (EPR) and optical absorption. In addition to iron-related EPR spectra, analyzed recently in blue and colorless euclase, chromium and vanadium-related EPR spectra were also detected in green euclase. Their role as color causing centers is discussed. The results indicate that Cr3+ ions substitute for Al3+ ions in the euclase structure. The EPR rotation patterns of Cr3+ with electron spin S = 3/2 were analyzed with monoclinic spin Hamiltonian leading to the parameters of g xx , g yy and g zz equal to 2.018, 2.001 and 1.956 and electronic fine structure parameters of D = −8.27 GHz and E = 1.11 GHz, respectively, with high asymmetry ratio E/D = 0.13. For the vanadium-related EPR spectra the situation is different. It is concluded that vanadium is incorporated as the vanadyl radical VO2+ with electron spin S = 1/2 with nearly axial spin Hamiltonian parameters gzz = 1.9447, g xx  = 1.9740 g yy  = 1.9669 and axial hyperfine interactions due to the nuclear spin I = 7/2 of the 51V isotope leading to A zz  = 502 MHz, A xx  = 150 MHz and A yy  = 163 MHz. The green color of euclase is caused by two strong broad absorption bands centered at 17,185 and 24,345 cm−1 which are attributed to the 4A2g4T2g, 4T1g transitions of Cr3+, respectively. Vanadyl radicals may introduce some absorption bands centered in the near infrared with tail extending into the visible spectral range.  相似文献   

4.
Single-crystal electron paramagnetic resonance (EPR) spectra of a natural citrine quartz without any artificial irradiation, measured at W-band frequencies (∼94 GHz) and temperatures of 77, 110 and 298 K, allow better characterization of three previously-reported Centers (#6, #7 and B) and discovery of three new defects (B′, C′ and G′). The W-band EPR spectra reveal that Centers #6 and #7 do not reside on twofold symmetry axes, contrary to results from a previous X-band EPR study. The W-band spectra also show that the previously reported Center B is a mixture of two defects (B and B′) with similar g matrices but different-sized 27Al hyperfine structures. Center C′ has similar principal g values to the previously reported Center C but is distinct from the latter by a larger 27Al hyperfine structure with splittings from 0.10 to 0.22 mT. Also, Center G′ has a similar g matrix to the previously reported Center G but a different 27Al hyperfine structure with splittings from 0.41 to 0.53 mT. These spin-Hamiltonian parameters, together with observed thermal properties and microwave-power dependence, suggest that Centers #6 and #7 probably represent O23− type defects. Centers B and B′ are probably superoxide radicals (O2) with the unpaired spin localized on the same pair of oxygen atoms around a missing Si atom but linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Similarly, Centers G and G′ are most likely superoxide radicals with the unpaired spin localized on another pair of oxygen atoms around a missing Si atom and linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Center C′ is probably an ozonide radical associated with a missing Si atom and linked to a substitutional Al3+ ion at the neighboring tetrahedral site. This study exemplifies the value of  high-frequency EPR for discrimination of  similar defect centers and determination of  small local structural distortions that are often difficult to resolve in conventional  X- and Q-band EPR studies.  相似文献   

5.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

6.
Samples of a natural amethyst, pulverized in air, and irradiated for gamma-ray doses from 0.14 to 70 kGy, have been investigated by powder electron paramagnetic resonance (EPR) spectroscopy from 90 to 294 K. The powder EPR spectra show that the surface Fe3+ species on the gamma-ray-irradiated quartz differ from its counterpart without irradiation in both the effective g value and the observed line shape, suggesting marked radiation effects. This suggestion is supported by quantitatively determined thermodynamic properties, magnetic susceptibility, relaxation times, and geometrical radius. In particular, the surface Fe3+ species on gamma-ray-irradiated quartz has larger Gibbs and activation energies than its non-irradiated counterpart, suggesting radiation-induced chemical reactions. The shorter phase-memory time (T m) but longer spin–lattice relaxation time (T 1) of the surface Fe3+ species on the gamma-ray-irradiated quartz than that without irradiation indicate stronger dipolar interactions in the former. Moreover, the calculated geometrical radius of the surface Fe3+ species on the gamma-ray-irradiated quartz is three orders of magnitude larger than that of its counterpart on the as-is sample. These results provide new insights into radiation-induced aerosol nucleation, with relevance to atmospheric cloud formation and global climate changes.  相似文献   

7.
The EPR spectra of Maxixe-type beryl contain a large number of overlapping signals. The angular dependence of the 1:3:3:1 signal typical for the CH3 radical shows that this radical is located at the center of the channel cavity with its symmetry axis parallel to the crystal c-axis and is rotating around this axis. Its EPR spectrum is axially symmetric with g // = 2.00263, g  = 2.00249 and A// = 2.288 mT, A = 2.256 mT. These anisotropies have the opposite signs of those found for surface-adsorbed methyl radicals. Hydrogen atoms are located at position 2a at the center of the beryl cavity and the EPR parameters of the narrow doublet signal are A 0 = 1,407 MHz and g = 2.00230. Another doublet signal, which is broader and has axial symmetry with g // = 2.00265, g  = 2.00625 and A// = 0.895 mT, A = 0.885 mT, could come from a HCO3 radical. One narrow and easily saturated signal with g // = 2.00227 and g  = 2.00386 is interpreted to arise from a carbon monoxide radical in the beryl channel, oriented with its axis parallel to the crystal c-axis. Additional weak doublet lines, which have similar g values as the carbon monoxide radical, are created by nearby hydrogens. A powder spectrum with g // = 2.0017 and g  = 2.0004 appears upon UV irradiation of the single crystal and is easily saturated. This spectrum is interpreted to arise from a carbon dioxide radical, which rotates around its symmetry axis.  相似文献   

8.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

9.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

10.
A natural sample of clinochlore from the Longitudinal Valley area of northeastern Taiwan has been characterized by using the powder X-ray diffraction (XRD), differential thermal analysis and electron paramagnetic resonance (EPR) spectroscopic techniques. The lattice parameters of the monoclinic (IIb) clinochlore with the composition (Mg2.988 Al1.196 Fe1.6845 Mn0.026)5.8945 (Si2.559 Al1.441)4 O10 (OH)8 have been calculated from the powder XRD data and are found to be a = 5.347 Å, b = 9.223 Å, c = 14.250 Å, β = 97.2° and Z = 2. The thermal behaviour of the sample showed the typical behaviour of clinochlore with a hydroxyl content of 12.5 wt%. The EPR spectrum at room temperature exhibits two resonance signals centred at g ≈ 2.0 and g ≈ 8.0. The signal at g ≈ 2.0 shows a six-line hyperfine structure which is a characteristic of Mn2+ ions in octahedral symmetry. The resonance signal at g ≈ 8.0 is a characteristic of Fe3+ ions. The EPR spectra have also been recorded at different temperatures (123–295 K). The population of spin levels (N) has been calculated for g ≈ 2.0 and g ≈ 8.0 resonance signals. It is observed that N increases with decreasing temperature. From EPR spectra, the spin-Hamiltonian parameters have been evaluated. The zero-field splitting parameter (D) is found to be temperature dependent. The peak-to-peak width of the g ≈ 8.0 resonance signal is found to increase with decrease in temperature.  相似文献   

11.
Natural radiation-induced defects were identified in specimens of sudoite (Al–Mg di-trioctahedral chlorite) related to unconformity-type uranium deposits at the base of the Athabasca Group (Saskatchewan, Canada), using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. X-band spectra indicate the presence of a main native defect, named the As-center, whose EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g // = 2,051 and g  = 2,005, and a secondary defect with apparent component g = 2,025. The study of oriented specimens shows that the main defect has its g // component perpendicular to the (ab) plane of sudoite. The As-center corresponds to an electron hole located on oxygen atoms of the structure and is likely associated with Si, according to the lack of hyperfine structure. The As-center in sudoite has EPR parameters similar to the A-center in kaolinite and dickite, and the Ai-center in illite. The saturation behavior of EPR spectra as a function of power demonstrates that native defects of sudoite are different from those known in other clays, such as kaolinite, dickite or smectite, but are similar to those of illite. The isochronal annealing data suggest that the main defect in sudoite is stable to more than 300°C. The corresponding defects characterized in sudoite may have the potential for tracing past radionuclide migration around unconformity-type uranium deposits.  相似文献   

12.
The X-band EPR and magnetic susceptibility in the temperature range 4.2–300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ (sp 2+x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10−8 and 1.73 × 10−8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.  相似文献   

13.
The magnetic properties of the synthetic Cu3SnS4 (kuramite)–Cu2FeSnS4 (stannite) pseudobinary series were investigated by means of electron paramagnetic resonance (EPR) spectroscopy, at room temperature, and by magnetometry, in the range 2–300 K. The system is particularly complex, from both chemical and crystal chemical points of view, in particular with respect to the metal valence states and the local ordering in the different terms of the series. Nevertheless, recent successes in synthesising nanostructured kuramite foster the interest to ascertain the bulk magnetic properties of these important semiconducting phases. The obtained results allowed to ascertain that a variable lack of local ordering in the Cu3–x Fe x SnS4 (x < 0.85) samples induce the raise of strong metal–sulphur–metal superexchange interactions, that result in the appearance of marked deviations from the single-ion behaviour, typical for pure stannite. Ferro- and antiferromagnetic interactions are in fact observed at relatively high temperatures (~150 K). A possible role played by Cu(I)–Fe(III) was revealed by the EPR measurements. The Cu-rich terms of the series (x < 0.1) are characterised by dynamic resonant disorder (i.e. time-evolving delocalisation of the formally divalent valence state for Cu among the nearest neighbouring Cu-sites), in addition to the Cu–Fe–Sn static disorder verified along the whole series. Both factors concurring to a non-periodic arrangement of paramagnetic ions in the lattice have the main effect to drastically broaden the EPR lines.  相似文献   

14.
Surface tension (σ) profoundly influences the ability of gas bubbles to nucleate in silicate melts. To determine how temperature impacts σ, experiments were carried out in which high-silica rhyolite melts with 5 wt% dissolved water were decompressed at temperatures that ranged from 775 to 1,085°C. Decompressions were also carried out using dacite melts with 4.3 wt% dissolved water at 1,150°C. Water bubbles nucleated in rhyolite only when decompressions exceeded 95 MPa at all temperatures. Bubbles nucleated in number densities that increased as decompression increased and at hotter temperatures at a given amount of decompression. After correcting decompression amounts for temperature differences, values for σ were estimated from nucleation rates and found to vary between 0.081 and 0.093 N m−1. Surface tension decreases as temperature increases from 775 to 875°C, but then increases as temperature increases to 1,085°C. Those values overlap previous results, but only when melt viscosity is less than 104 Pa s. For low-viscosity rhyolite, there is a strong correlation of σ with temperature, in which σ increases by 6.9 × 10−5 N m−1 C−1. That variation is robust for 5–9 wt% dissolved water, as long as melt viscosity is ≤104 Pa s. More viscous rhyolite deviates from that correlation probably because nucleation is retarded in stiffer melts. Bubbles nucleated in dacite when decompressions exceeded 87 MPa, and occured in one or more events as decompression increased. Surface tension is estimated to be 0.083 (±0.001) N m−1 and when adjusted for temperature agrees well with previous results for colder and wetter dacite melts. At a given water content, dacite melts have lower surface tensions than rhyolite melts, when corrected to a fixed temperature.  相似文献   

15.
Single-crystal W-band electron paramagnetic resonance (EPR) spectra of an electron-irradiated quartz, measured at room temperature, 110 and 77 K, disclose three previously reported hole centers (#1, G and an ozonide radical). The W-band EPR spectra of these three centers clearly resolve six magnetically nonequivalent sites each, whereas previous X- and Q-band EPR studies reported Centers #1 and the ozonide radical to consist of only three symmetry-related components and interpreted them to reside on twofold symmetry axes in the quartz structure. The calculated g matrices of Center #1 and the ozonide radical show that deviations from twofold symmetry axes are <10°, which are probably attributable to distortion related to neighboring charge compensating ions. The W-band EPR spectra of Center G not only result in improved g matrices but also allow quantitative determination of the nuclear hyperfine (A) and quadrupole (P) matrices of its 27Al hyperfine structure that was incompletely resolved before. In particular, the g-maximum and g-minimum principal axes of Center G are approximately along two pairs of O–O edges of the SiO4 tetrahedron, while the unique A principal axis is approximately along a Si–Si direction. These new spin-Hamiltonian parameters suggest that Center G most likely involves trapping of a hole between two oxygen atoms related to a silicon vacancy and stabilized by an Al3+ ion in the neighboring tetrahedron (hence an O2n−–Al3+ defect, where n is either 1 or 3).  相似文献   

16.
A natural datolite CaBSiO4(OH) (Bergen Hill, NJ, USA), before and after gamma-ray irradiation (up to ~70 kGy), has been investigated by single-crystal and powder electron paramagnetic resonance (EPR) spectroscopy from 10 to 295 K. EPR spectra of gamma-ray-irradiated datolite show the presence of a boron-associated oxygen hole center (BOHC) and an atomic hydrogen center (H0), both of which grow with increasing radiation dose. The principal g and A(11B) values of the BOHC at 10 K are: g 1 = 2.04817(3), g 2 = 2.01179(2), g 3 = 2.00310(2), A 1 = −0.401(7) mT, A 2 = −0.906(2) mT, A 3 = −0.985(2) mT, with the orientations of the g 1 and A 1 axes approximately along the B–OH bond direction. These experimental results suggest that the BOHC represents hole trapping on the hydroxyl oxygen atom after the removal of the proton (i.e. a [BO4]0 center): via a reaction O3BOH → O3BO· + H0, where · denotes the unpaired electron. Density functional theory (DFT) calculations (CRYSTAL06, B3PW, all-electron basis sets, and 1 × 2 × 2 supercell) support the proposed structural model and yield the following 11B hyperfine coupling constants: A 1 = −0.429 mT, A 2 = −0.901 mT, A 3 = −0.954 mT, in excellent agreement with the experimental results. The [BO4]0 center undergoes the onset of thermal decay at ~200°C and is completely annealed out at 375°C but can be restored readily by gamma-ray irradiation. Isothermal annealing experiments show that the [BO4]0 center exhibits a second-order thermal decay with an activation energy of 0.96 eV. The confirmation of the [BO4]0 center (and its formation from the O3BOH precursor) in datolite has implications for not only understanding of BOHCs in alkali borosilicate glasses but also their applications to nuclear waste disposal.  相似文献   

17.
Differently colored natural Brazilian andalusite crystals heat-treated under reducing and oxidizing conditions were analyzed by optical spectroscopy. The intensity of a broad intense band at around 20,500 cm−1 in the optical absorption spectra of all color zones of the sample is proportional to the product of Ti- and Fe-concentrations and herewith proves its attribution to electronic Fe2+/Ti4+ IVCT transition. The band is strictly E||c-polarized, causing an intense red coloration of the samples in this polarization. The polarization of the Fe2+/Ti4+ IVCT band in andalusite, E||c, shows that the electronic charge-transfer process takes place in Al–O octahedral groups that share edges with neighbors on either side, forming chains parallel to the c-axis of the andalusite structure. Under thermal treatments in air, the first noticeable change is some intensification of the band at 800°C. However, at higher temperatures its intensity decreases until it vanishes at 1,000°C in lightly colored zones and 1,100°C in darkly colored ones. Under annealing in reducing conditions at 700 and 800°C, the band also slightly increases and maintains its intensity at treatments at higher temperatures up to 1,000°C. These results demonstrate that weakening and disappearance of the Fe2+/Ti4+ IVCT band in spectra of andalusite under annealing in air is caused by oxidization of Fe2+ to Fe3+ in IVCT Fe2+/Ti4+-pairs. Some intensification of the band at 800°C is, most probably, due to thermally induced diffusion of Fe2+ and Ti4+ in the structure that leads to aggregation of “isolated” Ti4+ and Fe2+ ions into Fe2+–Ti4+-pairs. At higher temperatures, the competing process of Fe2+ → Fe3+ oxidation overcomes such “coupling” and the band continues to decrease. The different thermal stability of the band in lightly and darkly colored zones of the samples evidence some self-stabilization over an interaction of Fe2+/Ti4+-pairs involved in IVCT process.  相似文献   

18.
 Polarized electronic single crystal spectra of natural Fe2+ ion-bearing oxygen-based minerals, in which ferrous ions enter octahedral sites of different symmetry and distortion (olivine, cordierite, ortho- and clinopyroxene, amphibole), eightfold sites in garnet (almandine) and clinopyroxene (M2), and tetrahedral sites in spinel, were studied at temperatures from 300 to ca. 600 K. In the minerals studied, the spin-allowed bands of Fe2+ display rather variable temperature behaviour. In most cases, due to the thermal expansion of the Fe2+-bearing polyhedra, bands shift to lower energies upon increasing temperature, though there are some exceptions to this rule: in cases of other than sixfold octahedral or close to octahedral coordination, in almandine and spinel the bands shift to higher energies, which can be explained by an increase in distortions of the Fe2+-bearing polyhedra. Splitting of the excited 5 E g-level of Fe2+ ions usually, but not always, increases with temperature, reflecting thermally induced increase in distortion of the Fe2+-bearing sites in the minerals studied. Integral intensities of the bands in question do not always obey the general rule, according to which intensity should increase with temperature, when the 3d N-centred site is centrosymmetric, or should remain unchanged when the 3d N site lacks an inversion centre. The experimental results show that the response of the characteristics of absorption bands such as width, intensity and energy caused by dd transitions of Fe2+ in oxygen-based minerals to increasing temperature is not always uniform and is at variance with expectation. This temperature dependence cannot be used directly to solve band assignment problems, as earlier proposed in the literature. Received: 22 December 1999 / Accepted: 30 October 2000  相似文献   

19.
Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T 1−1 and nuclear spin-echo decay rate T 2−1 in tennantite samples in the temperature range 4.2–210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2–300 K shows a Curie–Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions.  相似文献   

20.
Sekaninaite (XFe > 0.5)-bearing paralava and clinker are the products of ancient combustion metamorphism in the western part of the Kuznetsk coal basin, Siberia. The combustion metamorphic rocks typically occur as clinker beds and breccias consisting of vitrified sandstone–siltstone clinker fragments cemented by paralava, resulting from hanging-wall collapse above burning coal seams and quenching. Sekaninaite–Fe-cordierite (XFe = 95–45) is associated with tridymite, fayalite, magnetite, ± clinoferrosilite and ±mullite in paralava and with tridymite and mullite in clinker. Unmelted grains of detrital quartz occur in both rocks (<3 vol% in paralavas and up to 30 vol% in some clinkers). Compositionally variable siliceous, K-rich peraluminous glass is <30% in paralavas and up to 85% in clinkers. The paralavas resulted from extensive fusion of sandstone–siltstone (clinker), and sideritic/Fe-hydroxide material contained within them, with the proportion of clastic sediments ≫ ferruginous component. Calculated dry liquidus temperatures of the paralavas are 1,120–1,050°C and 920–1,050°C for clinkers, with calculated viscosities at liquidus temperatures of 101.6–7.0 and 107.0–9.8 Pa s, respectively. Dry liquidus temperatures of glass compositions range between 920 and 1,120°C (paralava) and 920–960°C (clinker), and viscosities at these temperatures are 109.7–5.5 and 108.8–9.7 Pa s, respectively. Compared with worldwide occurrences of cordierite–sekaninaite in pyrometamorphic rocks, sekaninaite occurs in rocks with XFe (mol% FeO/(FeO + MgO)) > 0.8; sekaninaite and Fe-cordierite occur in rocks with XFe 0.6–0.8, and cordierite (XFe < 0.5) is restricted to rocks with XFe < 0.6. The crystal-chemical formula of an anhydrous sekaninaite based on the refined structure is | \textK0.02 |(\textFe1.542 + \textMg0.40 \textMn0.06 )\Upsigma 2.00M [(\textAl1.98 \textFe0.022 + \textSi1.00 )\Upsigma 3.00T1 (\textSi3.94 \textAl2.04 \textFe0.022 + )\Upsigma 6.00T2 \textO18 ]. \left| {{\text{K}}_{0.02} } \right|({\text{Fe}}_{1.54}^{2 + } {\text{Mg}}_{0.40} {\text{Mn}}_{0.06} )_{\Upsigma 2.00}^{M} [({\text{Al}}_{1.98} {\text{Fe}}_{0.02}^{2 + } {\text{Si}}_{1.00} )_{\Upsigma 3.00}^{T1} ({\text{Si}}_{3.94} {\text{Al}}_{2.04} {\text{Fe}}_{0.02}^{2 + } )_{\Upsigma 6.00}^{T2} {\text{O}}_{18} ].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号