共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical and experimental studies were performed on a new fracture test configuration called the edge cracked triangular (ECT) specimen. Using several finite-element analyses, the fracture parameters (i.e., K I, K II, and T-stress) were obtained for different combinations of modes I and II. The finite-element results show that the ECT specimen is able to provide pure mode I, pure mode II, and any mixed-mode loading conditions in between. Also, a series of mixed-mode fracture experiments were conducted on Neiriz marble rock using the proposed specimen. Furthermore, the generalized maximum tangential stress (GMTS) criterion was used to predict the experimental results. The GMTS criterion makes use of a three-parameter model (based on K I, K II, and T) for describing the crack tip stresses. Due to the significant positive T-stresses that exist in the ECT specimen, typical minimum fracture toughness values were expected to be obtained when the ECT specimen is used. The direction of fracture initiation and the path of fracture growth were also obtained theoretically using the GMTS criterion, and good agreement was observed between the experimental fracture path and theoretical simulations. The fracture study of this specimen reveals that the ECT specimen can be also used in mixed-mode fracture studies of rock materials in addition to the conventional circular or rectangular beam test samples. 相似文献
3.
Although fuzzy analysis has been widely developed, its use in rock mechanics and rock engineering is limited. Here, it has
been used to evaluate the potential for underground rock spalling at the boundary of a circular excavation in terms of rock
strength and in situ rock stress, given the uncertainty in both of these input parameters. Using standard techniques from
fuzzy mathematics, we develop an expression for the fuzzy factor of safety, and extend this to form the crisp parameters Safety
Certainty Value and its complement, the Failure Certainty Value. Plots of the Failure Certainty Value in terms of the in situ
stress ratio and rock strength/stress ratio show the effect of uncertainty on the assessment of stability. From these plots,
we illustrate how the relative importance of uncertainty in the input parameters can be assessed, with the associated ramifications
for site investigation and subsequent engineering design. 相似文献
5.
Although the loads applied on piles are usually a combination of both vertical and lateral loads, very limited experimental research has been done on the response of pile groups subjected to combined loads. Due to pile–soil–pile interaction in pile groups, the response of a pile group may differ substantially from that of a single pile. This difference depends on soil state and pile spacing. This paper presents results of experiments designed to investigate pile interaction effects on the response of pile groups subjected to both axial and lateral loads. The experiments were load tests performed on model pile groups (2 × 2 pile groups) in calibration chamber sand samples. The model piles were driven into the sand samples prepared with different relative densities using a sand pluviator. The combined load tests were performed on the model pile groups subjected to different axial load levels, i.e., 0 (pure lateral loading), 25, 50, and 75% of the ultimate axial load capacity of the pile groups, defined as the load corresponding to a settlement of 10% of the model pile diameter. The combined load test results showed that the bending moment and lateral deflection at the head of the piles increased substantially for tests performed in the presence of axial loads, suggesting that the presence of axial loads on groups of piles driven in sand is detrimental to their lateral capacity. 相似文献
6.
The present work deals with the three-dimensional nonlinear finite element (FE) analyses of the tunnel in soil subjected to internal blast loading. The analyses are performed using the coupled Eulerian–Lagrangian analysis tool in FE software Abaqus/Explicit. The soil and reinforced concrete lining are modeled using the Lagrangian elements. The explosive Trinitrotoluene (TNT) is modeled using the Eulerian elements. The stress–strain response of soil, concrete, and reinforcement are simulated using strain rate dependent Drucker–Prager plasticity, concrete damaged plasticity and Johnson–Cook (J–C) plasticity models, respectively. The pressure–volume relationship of the TNT explosive is simulated using the Jones-Wilkins-Lee equation of state. Parametric sensitivity studies have been performed for different (1) tunnel lining thicknesses, (2) explosive charge weights and (3) angles of internal friction of soil. It is observed from the results that blast induced pressure on the tunnel lining increases with the increase in charge weight. Both the lining and the surrounding soil undergo significant deformation. The deformation of the tunnel lining increases with increasing charge weight and decreases with increasing lining thickness and increasing the angle of internal friction of soil. Blast-induced velocity in soil attenuates with increasing distance from the source of the blast. 相似文献
7.
In order to reveal the evolution characteristics of the frost heaving pressure caused by the water–ice phase transition and volume expansion of the fractured rock mass subjected to the periodic freeze-thaw cycles, and the degradation effect of the freeze-thaw cycle on the mechanical properties of the fractured rocks, the long-term frost heaving pressure monitoring and uniaxial compression test were carried out on saturated fractured granite with different crack size. The results show that the evolution curve of frost heaving pressure can be divided into five stages. With the increase of freeze-thaw cycles, the peak frost heaving pressure decreases exponentially. The peak frost heaving pressure increases linearly with the increase of crack length. The influence of size effect on frost heaving pressure decreases with the increase of freeze-thaw cycles. As the number of freeze-thaw cycles increases, the rate of P-wave velocity decreases gradually. The peak stress loss rate of rock with different crack length increases in the form of power function with the increase of freeze-thaw cycles. The peak strain changes in the form of quadratic polynomial function with the increase of freeze-thaw cycles. The research results can provide reference for theoretical calculation and numerical analysis of frost heaving pressure of fractured rock mass in cold regions. 相似文献
8.
Cavity expansion theories are employed in a wide range of geotechnical applications including interpretation of pressure meter tests, evaluation of shaft capacity of piles, and pulling forces for horizontal directional drilling. Most of these theories assume infinite medium and isotropic stress field, which may not be justified for many applications. The main objectives of this paper are two folds: to investigate the effects of the free surface, stress gradient, and in situ stress anisotropy on the displacements during the expansion phase of cavities embedded in dilatant sands; and to establish correction factors to account for these effects. The investigation was conducted using two-dimensional finite element analyses. It was found that the cavity expansion theory due to Yu and Houlsby (Geotechnique 41:173–183, 1991) can be used reliably for cases subjected to an initial isotropic stress and embedment depth to diameter ratio of 20 or higher. However, it becomes inaccurate for shallow embedment depth and/or stress anisotropy conditions. An analytical procedure to account for the effects of embedment and/or stress anisotropy was proposed. The applicability of the proposed procedure was demonstrated for a wide range of soil properties and geometrical configurations. The results obtained confirmed its ability to estimate the cavity pressures within 10?% of the values obtained using FEA calculations. 相似文献
9.
The dynamic characterization of rocks under intermediate and high strain rates is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive laws is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. These data are necessary and require experimental techniques able to induce on the rock materials state of loading reproducing the actual dynamic condition. The dynamic characterization has been carried out by means of two special apparatus: the split Hopkinson tension bar and the hydro-pneumatic machine. These equipments are briefly described with a discussion on the results of dynamic tension tests at three different strain rates (0.1, 10, 100 strain/s) on Onsernone Orthogneiss for loading directions 0°, 45° and 90° with respect to the schistosity. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate, up to about two times with respect to the quasi-static conditions in the case of 0° and 45° orientation and more than three times in the case of 90° at high strain rates. Dynamic increase factors versus strain rate curves for tensile strength were also evaluated and discussed. 相似文献
10.
The compressibility properties, undrained shear strength, and stress history are essential for reliable calculations of settlement and bearing capacity of soft soils. However, it is sometimes a challenge to determine representative parameters for very soft and high plasticity clays, which are often found in Brazilian coastal areas. In this study an extensive site investigation was planned aiming to interpret the behaviour of a trial embankment on stabilized soft ground. The site investigation was carried out in a test area located in the west of city of Rio de Janeiro, consisted of three clusters in which standard penetration tests, vane shear tests, and piezocone tests (CPTu) were performed. A number of correlations was developed and compared with empirical equations in order to verify their reliability. The results of these tests made it possible to define geotechnical parameters of the soft clay to use in the numerical and analytical computations of the embankment on reinforced ground. 相似文献
12.
In order to better understand opening-mode fracture initiation and propagation perpendicular to the bedding plane at depth in sedimentary rocks, a series of two-dimensional (2D) numerical simulations is conducted. First, the stress states between two adjacent fractures for a typical three-layer model with pre-assigned fractures are simulated. Second, the same three-layer model without pre-assigned fractures is adopted to study the initiation and propagation of fractures in layered rocks. Numerical results show that infilling fractures grow more easily from flaws located near the interface than from those in the middle of the fractured layer. Flaws can begin to propagate to form a complete infilling fracture when the size of the flaws exceeds half of the thickness of the central layer. Under different overburden stress conditions and internal fluid pressure, the numerically obtained ratio of the critical fracture spacing to layer thickness varies between 0.465 and 0.833. This range encompasses the often-cited ratios of spacing to layer thickness in the literature for well-developed fracture sets. In addition, both the fracture pattern and the critical value of the fracture spacing to layer thickness ratio are strongly dependent on the heterogeneous characteristics of the central layer. In cases with a relatively homogeneous central layer, more interface fractures occur, and the interface delamination evidently influences the fracture saturation. 相似文献
13.
地基沉降计算中压缩层厚度确定方法主要有应变控制法和应力控制法两种.按这两种方法计算地基沉降,经比较可看出按应变控制法来确定压缩层厚度是不太合理的,其原因是由于按应变控制法确定的压缩层厚度与基底附加应力大小无关.最后给出了确定压缩层厚度方法的建议. 相似文献
14.
冻胀融沉给工程建设及运营带来了极大的危害,是科研人员及工程建设者迫切需要解决的重大问题. 土在冻结及融化过程中会产生水分迁移、冰水共存、固结和冻结缘等现象,这些现象的产生涉及到冻结及融化过程中冰水相变、冰分凝和水分迁移等关键机制的研究. 目前,冰水相变、冰分凝和水分迁移等机制的研究已成为解决冻胀融沉问题的重点及难点. 冻融过程是建立在热力学基础上关于水分场、应力场及温度场的三场耦合过程,其数值模拟正处于由水-热耦合到水-热-力耦合的演化阶段. 而冻结缘参数的测试和确定是理论探索和数值模拟的关键. 近几十年来,随着实验技术的发展,各种先进的探头及仪器设备被开发应用于冻结及融化过程的室内或者场地试验研究,以期揭示其内部的微结构特征及其热力学机理. 因此,系统地总结和分析土在冻结及融化过程中的现象、机理、试验条件以及数值模拟等工作,将对土冻结及融化过程的认识及研究有着至关重要的作用. 相似文献
16.
Interactions of the microbial mat community with the sedimentary environment were evaluated in two shallow, ephemeral lakes with markedly different hydrochemistry and mineralogy. The characterization of growing and decaying microbial mats by light microscopy observations and fluorescence in situ hybridization was complemented with biogeochemical and mineralogical measurements. The lakes studied were Eras and Altillo Chica, both located in Central Spain and representing poly-extreme environments. Lake Eras is a highly alkaline, brackish to saline lake containing a high concentration of chloride, and in which the carbonate concentration exceeds the sulfate concentration. The presence of magnesium is crucial for the precipitation of hydromagnesite in microbialites of this lake. Altillo Chica is a mesosaline to hypersaline playa lake with high concentrations of sulfate and chloride, favoring the formation of gypsum microbialites. Differences in the microbial community composition and mineralogy of the microbialites between the two lakes were primarily controlled by alkalinity and salinity. Lake Eras was dominated by the cyanobacterial genus Oscillatoria, as well as Alphaproteobacteria, Gammaproteobacteria and Firmicutes. When the mat decayed, Alphaproteobacteria and Deltaproteobacteria increased and became the dominant heterotrophs, as opposed to Firmicutes. In contrast, Deltaproteobacteria was the most abundant group in Lake Altillo Chica, where desiccation led to mats decay during evaporite formation. In addition to Deltaproteobacteria, Cyanobacteria, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were found in Altillo Chica, mostly during microbial mats growth. At both sites, microbial mats favored the precipitation of sulfate and carbonate minerals. The precipitation of carbonate is higher in the soda lake due to a stronger alkalinity engine and probably a higher degradation rate of exopolymeric substances. Our findings clarify the distribution patterns of microbial community composition in ephemeral lakes at the levels of whole communities, which were subjected to environmental conditions similar to those that may have existed during early Earth. 相似文献
17.
This paper presents results of analysis of full-scale pile load test data of 14 piles embedded in either loose or medium dense
sands. The analysis was performed using two methods, p– y curve approach and a more recently developed khmax approach. Comparison of the results obtained using both the methods is also presented. A step-by-step analysis procedure
is presented for predicting lateral load deflection response of single piles in sand using the khmax approach. The results presented show that the khmax approach has promise over the p– y curve approach because of its simplicity and the fact that it provides upper- and lower-bound curves, which are valuable
guides to making engineering decisions. For loose sands, a new range of khmax values is recommended to better predict the lateral load–deflection response of single piles. 相似文献
18.
Geotechnical and Geological Engineering - Negative skin friction on piles represents a severe problem when piles were installed in soft clay due to consolidation process. It reduces the bearing... 相似文献
19.
Geotechnical and Geological Engineering - Frequent production blasting is an important factor affecting the slope stability in open-pit mines; thus, it is essential to monitor and analyze blasting... 相似文献
|