首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄雨  郝亮 《工程地质学报》2008,16(2):184-188
地震诱发的地基液化对桩基础的破坏极大,液化地基中桩的破坏机理是岩土地震工程中的一个重要研究课题。目前地基液化时桩土结构系统的地震性态尚没有认识充分,已有的研究内容较多局限于桩身材料的强度破坏方面,难以考虑液化土体侧向流动、基桩屈曲失稳、以及土与结构动力相互作用等复杂因素的影响。本文重点加强以下3个方面的深入探讨和研究:(1)液化地基中桩的屈曲失稳;(2)液化地基中桩基破坏的数值模拟新方法;(3)液化地基中桩-土-结构的动力相互作用分析。  相似文献   

2.
A number of cases where earthquake-induced damage was massive or presented interesting distribution patterns in recent earthquakes are presented.The highly serious damage along reactivated seismic faults and fractures is discussedfor the earthquakes of Pyrgos (Greece), Egio (Greece) and Kobe (Japan). Additionally, we describe characteristic types of building failure in the earthquake of Egio,caused by the coexistence of surficial faulting and liquefaction. Of particularinterest is the damage pattern in the Kobe and Dinar earthquakes, attributed to seismicwave directivity, caused by migration of the earthquake source. Finally, a specialcase of building damage is described for the case of the Adana, Turkey earthquake,which is connected to the shape and the azimuthal location of buildings in respectto the epicentre. All the above cases are valuable sources of information and can be utilizedin the reduction of seismic risk in constructions and urban complexes.  相似文献   

3.
The Bhuj, India, earthquake of 26 January 2001, Ms 7.9, caused dams built on alluvium to sustain damage ranging from cosmetic to severe. Major damage was caused almost entirely by soil liquefaction in the alluvium. The critical factor was the level of earthquake ground motion.

The Bhuj earthquake showed that peak horizontal accelerations (PHAs)≤0.2 g were generally safe. PHAs>0.2 g were hazardous, when unconsolidated granular foundation soils were water saturated. N values of <20 are indicative of susceptibility to soil liquefaction. The Bhuj experience showed that alluvial foundation soils, subject to a PHA>0.2 g, must be evaluated over the full area beneath a new dam and all soils deemed susceptible to liquefaction must be either removed or treated. For remediating an old dam, reliable options are removal and replacement of liquefiable alluvium beneath upstream and downstream portions of the dam, combined with building berms designed to provide stability for the dam should there be a strength loss in soils beneath the dam.  相似文献   


4.
通过对郑州市黄河大堤一线土体的沉降,压密固结,饱水砂土的地震液化研究,认为黄河大堤附近浅层地下水开采后所诱发的地面沉降,固结过程,不会对大堤造成危害,而饱水砂土的水位降低,还会减轻或消除地震时液化砂土现象,对大堤的稳定性有利。  相似文献   

5.
The extent of damage and affected areas in Bhuj earthquake (26th January 2001) has provided a unique opportunity to evaluate a wide range of geotechnical issues. A large area in the Rann of Kutch experienced massive liquefaction resulting in ground subsidence and lateral flow. A large number of dams in the Kutch district suffered moderate to severe damages. Many buildings were damaged and collapsed in the city of Ahmedabad situated on the bank of the Sabarmati River. In this paper, the ground response studies at a site in Ahmedabad City along with observations of geotechnical aspects such as ground cracking, sand volcanoes and liquefaction of soils associated with the Bhuj earthquake are discussed. The ground response studies indicate that the varying degree of damage to multistorey buildings in Ahmedabad in the close proximity of Sabarmati river area was essentially due to the collapse and undesirable settlement of partly saturated silty sand deposits. Large settlements are attributed to amplification of the ground and the near resonance condition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
回顾了1989年美国Mw6.9级Loma Prieta地震、1993年日本Ms7.8级Kushiro-Oki地震、1994年日本Mw8.2级Hokkaido Toho-Oki地震、1995年日本Ms7.2级阪神地震、1999年台湾集集地震、1999年土耳其Mw7.4级Kocaeli地震、2001年美国Mw6.8级Nisqually地震以及2011年Mw9.0级东日本地震中场地抗液化工程措施的成功案例,初步分析了各种抗液化工程措施的有效性与优劣性,可以给出如下工程场地抗液化处理的经验:(1)对于易液化的沿海及填海造陆场地,采用适宜的抗液化工程措施应成为地基处理不可缺少的环节;(2)应基于场地条件、经济条件及环境要求,综合考虑场地抗液化地基处理措施的选择;(3)挤密砂桩法和碎石桩法运用广泛、技术成熟且比较经济,宜优先选择作为抗震设防烈度Ⅷ度及以下地区的场地抗液化地基处理措施;(4)强夯法使用机具简单、费用低廉,适宜选择作为抗震设防烈度Ⅷ度及以下地区大面积场地的抗液化地基处理措施;(5)注浆法、深层搅拌法、旋喷法作为抗震设防烈度Ⅸ度及以下地区的场地抗液化地基处理措施是有效的;(6)多种抗液化地基处理措施联合使用的处理效果往往优于单一措施单独使用的处理效果,在条件许可的情况下,宜选择多种抗液化地基处理措施联合使用,以期达到更好的处理效果。  相似文献   

7.
Yu Huang  Miao Yu 《Natural Hazards》2013,65(3):2375-2384
Liquefaction, which can be defined as a loss of strength and stiffness in soils, is one of the major causes of damage to buildings and infrastructure during an earthquake. To overcome a lack of comprehensive analyses of seismically induced liquefaction, this study reviews the characteristics of liquefaction and its related damage to soils and foundations during earthquakes in the first part of the twenty-first century. Based on seismic data analysis, macroscopic phenomena of liquefaction (e.g., sand boiling, ground cracking, and lateral spread) are summarized, and several new phenomena related to earthquakes from the twenty-first century are highlighted, including liquefaction in areas with moderate seismic intensity, liquefaction of gravelly soils, liquefaction of deep-level sandy soils, re-liquefaction in aftershocks, liquid-like behavior of unsaturated sandy soils. Additionally, phenomena related to damage in soils and foundations induced by liquefaction are investigated and discussed.  相似文献   

8.
饱和砂土地层中隧道结构动力离心模型试验   总被引:5,自引:3,他引:2  
饱和砂土地层中隧道结构可能会因地震地基液化而发生破坏。通过对可液化地层中地铁隧道结构的地震反应进行动力离心模型试验,研究了饱和松砂地基在地震作用下的反应特性、可液化地层中地铁隧道结构的上浮及变形特性和设置截断墙对限制隧道结构上浮的效果等问题。研究结果表明,地基液化引起的隧道衬砌上的附加变形内力以及隧道上浮量主要受地基液化时土水压力的变化影响。截断墙的设置限制了隧道两侧土体向隧道下方流动的趋势,有效减小了隧道结构的上浮量  相似文献   

9.
Liquefaction of loose, saturated granular soils during earthquakes poses a major hazard in many regions of the world. The determination of liquefaction potential of soils induced by earthquake is a major concern and an essential criterion in the design process of the civil engineering structures. A large number of factors that affect the occurrence of liquefaction during earthquake exist a form of uncertainty of non-statistical nature. Fuzzy systems are used to handle uncertainty from the data that cannot be handled by classical methods. It uses the fuzzy set to represent a suitable mathematical tool for modeling of imprecision and vagueness. The pattern classification of fuzzy classifiers provides a means to extract fuzzy rules for information mining that leads to comprehensible method for knowledge extraction from various information sources. Therefore, it is necessary to handle the soil liquefaction problem in a rational framework of fuzzy set theory. This study investigates the feasibility of using fuzzy comprehensive evaluation model for predicting soil liquefaction during earthquake. In the fuzzy comprehensive evaluation model of soil liquefaction, the following factors, such as earthquake intensity, standard penetration number, mean diameter and groundwater table, are selected as the evaluating indices. The results show that the method is a useful tool to assess the potential of soil liquefaction.  相似文献   

10.
The liquefaction of clayey soils under cyclic loading   总被引:4,自引:0,他引:4  
This paper seeks to investigate the liquefaction of clayey soils, a phenomenon that has been the trigger for many natural disasters in the last few decades, including landslides. Research was conducted on artificial clay-sand mixtures and natural clayey soils collected from the sliding surfaces of earthquake-induced landslides. The undrained response of normally consolidated clayey soils to cyclic loading was studied by means of a ring-shear apparatus. For the artificial clay-sand mixtures, it was found that the presence of a small amount of bentonite (≤ 7%) would cause rapid liquefaction, while a further increase in bentonite content (≥ 11%) produced the opposite effect of raising soil resistance to liquefaction by a significant degree. It was demonstrated that the bentonite-sand mixture was considerably more resistant to liquefaction than the kaolin-, and illite-mixtures, given the same clay content. The test results of plastic soils revealed the significant influence of plasticity on the liquefaction resistance of soil. The microfabric of clayey soil was investigated by means of a scanning electron microscope. The analysis showed that the liquefaction potential of soil was strongly related to certain particle arrangements. For example, soil vulnerable to liquefaction had an open microfabric in which clay aggregations generally gathered at the sand particle contact points, forming low-strength “clay bridges” that were destroyed easily during cyclic loading. On the other hand, the microfabric of soil that was resistant to liquefaction appeared to be more compact, with the clay producing a matrix that prevented sand grains from liquefying. In the case of the natural soils, the obtained results indicated that their cyclic behavior was similarly influenced by factors such as clay content, clay mineralogy and plasticity. The relation between the liquefaction potential of natural soil and its microfabric was thus also established. On the basis of the obtained results, the authors posited an explanation on the mechanism of liquefaction for clayey soil.  相似文献   

11.
汤皓  陈国兴  李方明 《岩土力学》2006,27(Z1):1007-1012
采用组件式GIS (COMGIS)技术开发了结合BP神经网络分析模型的场地地震液化势评价系统,调用水平成层土地震反应分析程序SHAKE91实现设定地震下地震动影响场的模拟。在VB下调用Matlab神经网络工具箱来完成场地地震液化势评价模型在COMGIS系统中的模块化;利用GIS技术对评价结果,即液化势等级进行空间复合,给出场地潜在的地层液化势空间分布图。研究表明,SHAKE91应用程序在系统菜单下可直接调用,实现地震动影响场计算的模块化;BP神经网络技术应用于场地地震液化势评价中能达到较为理想的效果;系统的GIS空间分析功能可使评价结果与场地信息进行空间匹配,实现目标场地潜在地震液化势的快速评估。  相似文献   

12.
The 1999 Kocaeli earthquake of Turkey (Mw = 7.4) caused great destruction to buildings, bridges and other facilities, and a death tall of about 20,000. During this earthquake, severe damages due to soil liquefaction and associated ground deformations also occurred widespread in the eastern Marmara Region of Turkey. Soil liquefaction was commonly observed along the shorelines. One of these typical sites is Sapanca town founded on the shore of Lake Sapanca. This study was undertaken as quantitative measurement of ground deformations induced by liquefaction along the southern shore of Lake Sapanca. The permanent lateral ground deformation was measured through the aerial photogrammetry technique at several locations both along the shoreline and in the town. In situ soil profiles and material properties at Sapanca area were obtained based on the data from 55 borings and standard penetration tests (SPT), and laboratory tests, respectively. The data and the empirical methods recommended by an NCEER workshop were employed to evaluate the liquefaction resistance of the soils. In addition, simple shaking tests on a limited number of samples were also performed. The permanent ground displacements were estimated from the existing empirical models, sliding block method and residual visco-elastic finite element methods. Then these estimations were compared with the observed ground displacements. The assessments suggested that liquefaction at Sapanca have occurred within Quaternary alluvial fan deposits at depths 1 and 14 m, and the major regions of liquefaction and associated ground deformations were located along the shore and creeks. The evaluations also indicated that for sites with no sand boils but with ground displacement greater than 1 m, thickness of the non-liquefiable layer was large. It is also noted that no liquefaction-induced ground surface disruption is expected at the site when the thickness of the liquefiable and non-liquefiable layers vary between 0.5 and 1.5 m, and 3.5 and 5.5 m, respectively. Except one model, all the empirical models employed in the study over-predicted the observed lateral ground displacements, while sliding block method and residual visco-elastic finite element methods yielded reasonably good results if the known properties of liquefied soils are used.  相似文献   

13.
Liquefaction of loose and saturated soils during earthquakes and strong ground motions has been a major cause of damage to buildings and earth embankments as well as other civil engineering structures. In order to evaluate the liquefaction potential and steady state characteristics of gravely sand of south west Tehran,a subsoil exploration program conducted dividing the region into 10 zones. In each zone of 500 m × 500 m a borehole of 20 m deep was drilled. SPT was performed at one meter intervals in each borehole and a total of 200 samples were recovered. Soils of similar grain size distribution have been considered to have similar steady state characteristics,therefore consolidated undrained triaxial tests were performed on these soils of similar grain size distribution to evaluate the steady state strength. The steady state line for each soil type was derived. Comparing the steady state strengths with the shear stress due to an earthquake with a PGA of 0.35 g,the potential of sand liquefaction and .ow failure in soil layers has been evaluated and the settlement of soil due to the liquefaction phenomena is calculated. Finally some recommendations for estimating the steady state strength from simple SPT test in gravely sands are presented.  相似文献   

14.
Analysis of earth dams affected by the 2001 Bhuj Earthquake   总被引:3,自引:0,他引:3  
An earthquake of magnitude of 7.6 (Mw 7.6) occurred in Bhuj, India on January 26, 2001. This event inflicted damages of varying extents to a large number of small to moderate size multi-zone earth dams in the vicinity of the epicenter. Some of the distress was due to the liquefaction of saturated alluvium in foundation. Liquefaction was relatively localized for the majority of these dams because the earthquake struck in the middle of a prolonged dry season when the reservoirs behind these dams were nearly empty and shallow alluvium soils underneath the downstream portions of the dams were partly dry. Otherwise, liquefaction of foundation soils would have been more extensive and damage to these dams more significant. Six such dams have been examined in this paper. Four of these facilities, Chang, Shivlakha, Suvi, and Tapar were within the 50 km of epicenter region. These dams underwent free-field ground motion with peak ground accelerations between 0.28g to 0.52g. Of these Chang Dam underwent severe slumping, whereas Shivlakha, Suvi, and Tapar Dams were affected severely especially over the upstream sections. Fatehgadh Dam and Kaswati Dam were affected relatively less severely. Foundation conditions underneath these dams were first examined for assessing liquefaction potential. A limited amount of subsurface information available from investigations undertaken prior to the earthquake indicates that, although the foundation soils within the top 2.0 to 2.5 m underneath these dams were susceptible to liquefaction, Bhuj Earthquake did not trigger liquefaction because of lack of saturation of these layers underneath the downstream portions of these dams. These dams were then analyzed using a simple sliding block procedure using appropriate estimates of undrained soil strength parameters. The results of this analysis for these structures were found to be in general agreement with the observed deformation patterns.  相似文献   

15.
Kayen  Robert E.  Mitchell  James K. 《Natural Hazards》1997,16(2-3):243-265
Uncompacted artificial-fill deposits on the east side of San Francisco Bay suffered severe levels of soil liquefaction during the Loma Prieta earthquake of 17 October 1989. Damaged areas included maritime-port facilities, office buildings, and shoreline transportation arteries, ranging from 65 to 85 km from the north end of the Loma Prieta rupture zone. Typical of all these sites, which represent occurrences of liquefaction-induced damage farthest from the rupture zone, are low cone penetration test and Standard Penetration Test resistances in zones of cohesionless silty and sandy hydraulic fill, and underlying soft cohesive Holocene and Pleistocene sediment that strongly amplified ground motions. Postearthquake investigations at five study sites using standard penetration tests and cone penetration tests provide a basis for evaluation of the Arias intensity-based methodology for assessment of liquefaction susceptibility.  相似文献   

16.
Kachchh region of India is a rift basin filled with sediments from Jurassic to Quaternary ages. This area is tectonically active and witnessed several major earthquakes since the recent historical past. During an earthquake event, the water-laden foundation soil liquefies and causes damage to buildings and other civil engineering structures. The January 26, 2001, Bhuj earthquake demonstrated extensive liquefaction-related damages in entire Kachchh Peninsula. Therefore, evaluation of liquefaction susceptibility of unconsolidated sediments is a vital requirement for developing seismic microzonation maps. In this paper, a new approach involving remote sensing techniques and geotechnical procedures is demonstrated for effective mapping of liquefaction-susceptible areas. The present and paleo-alluvial areas representing unconsolidated sediments were mapped using Landsat-TM data and field reflectance spectra. Spectral discrimination of alluvial area was made using the feature-oriented principal component selection and spectral angle mapping techniques. Subsequently, field geotechnical investigations were carried out in these areas. It is evident from the results that the alluvial soils are predominantly sandy loam with very low (7–28) standard penetration test values. The evaluated factor of safety for these soils varies from 0.43 to 1.7 for a peak ground acceleration of 0.38. Finally, a liquefaction susceptibility map is prepared by integrating results on alluvium distribution, factor of safety, and depth to water table.  相似文献   

17.
回顾了1994年美国Northridge地震、1995年日本阪神地震、1999年土耳其Kocaeli地震、1999年台湾集集地震、2008年中国汶川地震、2010年智利Maule地震、2010~2011新西兰Darfield地震及余震、2011年东日本地震中大量的、不同类型的液化实例调查与研究,发现这些地震的液化具有以下特点:(1)罕见的特大地震(Mw9.0)使远离震中300~400 km的新近人工填土发生严重的大规模液化;(2)特大地震(Ms8.0、Mw8.8)使远离震中的低烈度Ⅴ~Ⅵ度地区发生严重液化;(3)海岸、河岸附近地区的新近沉积冲积、湖积土,填筑时间不到50年的含细粒、砂砾人工填土,容易发生严重液化;(4)天然的砂砾土层液化发生严重液化;(5)发生了深达20 m的土层液化现象;(6)松散土层液化后可以恢复到震前状态并再次发生液化;(7)高细粒(粒径≤75 ?m)含量≥50%或高黏粒(粒径≤5 ?m)含量≥25%的低-中塑性土严重液化,对介于类砂土与类黏土之间的过渡性态土,有时地表未见液化现象;(8)液化土层的深度较深或厚度较小时,容易出现地面裂缝而无喷砂现象;有较厚的上覆非液化土层时,场地液化不一定伴随地表破坏。液化实例证明,第四系晚更新世Q3地层可以发生严重液化;黏粒含量不是评价细粒土液化可能性的一个可靠指标;低液限、高含水率的细粒土易发生液化,采用塑性指数PI、含水率wc与液限LL之比作为细粒土液化可能性评价的指标是适宜的。综合Boulanger和Idriss、Bray和Sincio、Seed和Cetin等的液化实例调查与室内试验研究成果,建议细粒土液化可能性的评价准则如下:PI <12且wc/LL>0.85的土为易液化土,12<PI≤20和/wc/LL≥0.80的土为可液化土;PI >20或wc/LL<0.80的土为不液化土。  相似文献   

18.
近年来,土体冲击液化引起的工程地质问题已经广泛地出现在人们的视野中,但目前对于土体冲击液化机理的研究尚不够完善。本文通过冲击液化试验及相关微观试验,揭示了不同冲击能下砂质粉土的孔压发育与微观结构变化情况,在此基础上,从微观角度对砂质粉土冲击液化机理进行了讨论。结果表明:砂质粉土受冲击液化会出现明显的孔压激增现象,且单位冲击能下激发的孔压随落距增大而减小,并伴随明显的微结构变化;冲击液化作用主要从土体颗粒接触关系、颗粒形态,孔隙大小、形态及方向等方面改变了土体的微观结构;颗粒骨架破坏与孔隙收缩是土体冲击液化的主要微观机理,不同冲击能下土体的液化机理也由于骨架破损和孔隙收缩程度不同而产生出相应的差异。  相似文献   

19.
地震液化条件下地面的大变形三维数值分析   总被引:3,自引:1,他引:2  
童立元  王斌  刘义怀  张波 《岩土力学》2008,29(8):2226-2230
地基液化条件下地面大变形是造成工程结构破坏的主要原因之一。考虑地形、地震、土层、地下水等影响因素,针对典型的岸坡场地3层土地基模型,利用有限差分法FLAC3D,对可液化场地在地震作用下发生地面大变形的过程进行了数值模拟。结果表明,临空面坡比愈大、地表坡度越陡,地基液化地表侧向位移值愈大;变坡度的场地在地震作用下发生的侧移要比单一倾斜率的场地大;地震最大加速度越大、地震持续时间越长,地基液化侧向位移、地表沉陷和隆起现象越严重;液化层的埋深、厚度以及地下水位都对地面大变形的产生有着不同程度的影响,应选择合理的地基处理方案进行处理。  相似文献   

20.
This paper outlines a methodology for evaluating the likelihood of catastrophic landslide occurrence on gentle slopes in liquefiable soils during earthquake. The approach is based on a modified Newmark sliding block model of assessing the earthquake-induced undrained landslide displacements for conditions of no shear stress reversals on the sliding surface. By employing the shear resistance-displacement relationship from undrained monotonic ring shear tests, the simulation model incorporates the sensitivity of computed displacements to variations in yield acceleration. The proposed approach involves an examination of undrained seismic slope performance under various horizontal seismic waveforms scaled to different specific values of the peak earthquake acceleration. An example problem illustrates how the proposed methodology may be used to demarcate, based on the magnitude of permanent seismic displacement, the levels of low, moderate and high risk of catastrophic landslide on a gentle slope in a saturated cohesionless soil susceptible to liquefaction during earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号