首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

The summer precipitation (June–September) in the source region of the Yellow River accounts for about 70% of the annual total, playing an important role in water availability. This study divided the source region of the Yellow River into homogeneous zones based on precipitation variability using cluster analysis. Summer precipitation trends and teleconnections with global sea-surface temperatures (SST) and the Southern Oscillation Index (SOI) from 1961 to 2010 were investigated by Mann-Kendall test and Pearson product-moment correlation analysis. The results show that the northwest part (Zone 1) had a non-significantly increasing trend, and the middle and southeast parts (zones 2 and 3) that receive the most precipitation displayed a statistically significant decreasing trend for summer precipitation. The summer precipitation in the whole region showed statistically significant negative correlations with the central Pacific SST for 0–4 month lag and with the Southern Indian and Atlantic oceans SST for 5–8 month lag. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations, mainly for 0–2 months lag, with summer precipitation in the source region of the Yellow River. It is seen that El Niño Southern Oscillation (ENSO) events have an influence on summer precipitation, and the predominant negative correlations indicate that higher SST in equatorial Pacific areas corresponding to El Niño coincides with less summer precipitation in the source region of the Yellow River.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

2.
African precipitation trends are commonly analyzed using short-term data observed over small areas. This study analyzed changes in long-term (1901–2015) annual and seasonal precipitation of high spatial (0.5°?×?0.5° grid) resolution covering the entire African continent. To assess an acceleration/deceleration of the precipitation increase/decrease, trend magnitude (mm/year) over the period 1991–2015 was subtracted from that of 1965–1990 to obtain Slope Difference (SD, mm/year). Co-variation of precipitation sub-trends with changes in large-scale ocean–atmosphere conditions was investigated. Regardless of the trend significance, in most parts of Africa, annual precipitation exhibited negative (positive) trends over the period 1965–1990 (1991–2015). Thus, the continent was, on average, recently (from 1991 to 2015) wetter than it was over the period 1965–1990. From 1901 to 2015, the null hypothesis H0 (no trend) was rejected (p < 0.05) for annual precipitation decrease over West Africa especially along the coastal areas near the Gulf of Guinea. The H0 was also rejected (p < 0.05) for the increase in annual and September–November precipitation of some areas along the Equatorial region (such as in Gabon and around Lake Victoria). For both annual and seasonal precipitation, the least SD values in the range ??1 to 1 mm/year were obtained in areas north of 10° N. The SD value went up to about 20 mm/year over the Sahel belt especially for the peak monsoon (June–August season). For the March–May precipitation, positive SD values were obtained in the Western part of Southern Africa. However, negative SD values (around ??5 mm/year) were obtained in the Horn of Africa. Variation in sub-trends of the East African precipitation was found to be driven by changes in Sea Surface Temperature (SST) of the Indian and Atlantic Oceans. Variability in sub-trends of the West African precipitation is linked to changes in SST of the Atlantic Ocean. Changes in sub-trends of the South African precipitation correspond to anomalies in SST from the Pacific and Indian Oceans. Knowledge of precipitation changes and possible drivers is vital for predictive adaptation regarding the impacts of climate variability on hydro- or agro-meteorology.  相似文献   

3.
The Loess Plateau in China constitutes an important source area for both water and sediments to the Yellow River. Thus, improved prediction techniques of rainfall may lead to better estimation of discharge and sediment content for the Yellow River. Consequently, the objective of this study was to establish better links between rainfall of the Loess Plateau in China and sea surface temperature (SST) in the Pacific Ocean. Results showed that there is a strong lagged correlation between and SST and rainfall. The SST for Micronesia and areas south of the Aleutian Islands showed significant correlations (s.f. < 0·001; 99·9%) with rainfall over the dryer region of the Loess Plateau for a lag of 4 to 6 months. The SST over the equator on the east Pacific Ocean also showed significant negative correlation with rainfall. Low and middle latitude areas (S10–20° and around 30° ) of the south‐east Pacific Ocean displayed significant positive and negative correlation with rainfall on the semiarid Loess Plateau. The differenced SST values (positive SST minus negative SST) increased these correlations with rainfall. An artificial neural network (ANN) model was used to predict summer rainfall from the differenced SST during the spring period. The correlation between predicted and observed monthly rainfall was in general larger than 0·7. This indicates that major annual rainfall (during summer season) can be predicted with good accuracy using the suggested approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
“The Ekman Drain”: a conduit to the deep ocean for shelf material   总被引:1,自引:1,他引:0  
A long (167 days) acoustic Doppler current profiler time series from the European continental slope west of Scotland has been analysed to investigate the influence of bathymetric steering on the slope current and the extent of down-slope transport in the bottom boundary layer. Within an interior region between the surface and bottom boundary layers, the direction of the flow is found to be remarkably consistent as required by the Taylor-Proudman theorem for geostrophic flow. The mean value of this interior flow direction is taken to be the effective direction of the bathymetry in controlling the geostrophic flow and so defines the rotation of coordinates required to determine along and cross-flow transports. Within a bottom boundary layer (BBL) of thickness ~100 m, the direction of the flow was deflected increasingly to the left with the mean veering angle ~12.5° at 12 mab and a down-slope speed of 2.6 cm s?1. The corresponding integrated transport (the “Ekman drain”) had an average value of ~1.6 m2 s?1 over the full observation period. This down-slope flow was significantly correlated (at 0.1 % level), with the stress applied by the along-slope flow although with considerable scatter (r.m.s. ~1 m2 s?1) which suggests the influence of other forcing mechanisms. Combining the BBL volume transport with an estimate of the mean concentration of suspended particulate material indicates an annual down-slope flux of 3.0?±?0.6 tonnes m?1 year?1, of which ~0.36?±?0.1 tonnes m?1 year?1 is carbon. Biogeochemical measurements indicate that the carbon flux in the Ekman drain predominates over settlement of organic material through the water column over the slope and provides for relatively rapid delivery of material to deep water.  相似文献   

5.
Two mutually exclusive ocean models, Ocean general circulation model for the Earth Simulator (OFES) and the Bluelink ReANalysis (version 2.1; BRAN2.1), and the spin-up model (SPINUP4) of BRAN2.1 were used to investigate seasonal variability of the East Australian Current (EAC). These model outputs were tested against satellite and in situ data. The seasonally averaged sea surface temperature (SST) in the OFES and SPINUP4 shows a negative bias of 1 °C. However, the OFES, SPINUP4, and BRAN2.1 have a similar seasonal cycle in SST. The annual mean EAC transport computed at 28°S from the three models shows a good agreement with annual mean transport computed using the in situ data. However, they have considerable differences in terms of annual cycle. A better performance of the BRAN2.1 in simulating the temperature field is a result of data assimilation. The advection of heat across the open boundaries contributes ~50 % of the heat content change in the region. This study suggests that the advection by the EAC plays a significant role in heat content change of the region.  相似文献   

6.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   

7.
8.
The Gumbel’s third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900–2013 with magnitude M w ? ?4.0, and the Iranian Plateau is separated into equal area mesh of 1° late?×?1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.  相似文献   

9.
The acceleration of the industrialization process in China has increased the demand for electricity and triggered a power-plant building boom, especially along China’s eastern coast, where the economy gets off early and enjoys a fast development. The thermal plumes, residual chlorine, nuclides and other pollutions produced by the thermal and nuclear power plants have exerted an impact on the coastal eco-environment. To monitor the thermal pollution from the power plants at Yueqing Bay on the eastern coast, in this research, the distribution of sea surface temperature (SST) surrounding the power plants is obtained by using the SST retrieval methods developed for Landsat Enhanced Thematic Mapper Plus (ETM+), HJ-1B infrared sensor (IRS) and Terra moderate resolution imaging spectroradiometer (MODIS) data. The comparison of the SST retrieval results before and after the operation of power plants indicates that the total area of sea waters that is impacted by the thermal discharge from the two power plants at Yueqing Bay is approximately 17.95 km2, with the highest SST rise of 4.5 °C appearing over the waters around the outlet of the Huaneng Yuhuan power plant on the eastern shore, whereas the highest SST rise around the Zheneng Yueqing power plant on the western shore reaches 3.8 °C. The intensity and scope of influence of the thermal discharge mainly depend on the installed capacity of power plants, coastal terrain, and tide. Although the area where the SST rise is more than 3 °C is not large, thermal discharge still has an impact on bay ecosystems due to the relatively closed nature of the bay environment. Due to the influence of rising water temperatures on the reproduction and individual evolution of fish, shrimp, crabs, shellfish and other aquatic creatures, in the long term, the thermal pollution from coastal power plants will affect the volume of natural fishery and biological resources throughout the waters. The quantitative retrieval results also suggest that relative to MODIS data, Landsat ETM+ and HJ-1B IRS data with a high spatial resolution are more applicable to the estimation of small-scale SST, and IRS data with a high temporal resolution are more helpful in the study of spatio-temporal variability of thermal plumes from coastal power plants.  相似文献   

10.
The El Niño-Southern Oscillation (ENSO) is characterized based on the date the events are mature. Their time lag defined relative to the central value of successive intervals of 4 years length, e.g. 01/1868–01/1872, 01/1872–01/1876 …, 01/1996–01/2000 … affects their evolution and, for a given amplitude, their variability. It specifies the dynamics of the quadrennial Quasi-Stationary Wave (QSW) in the tropical Pacific since ENSO always occurs at the end of the eastward phase propagation of that QSW. A third of events are unlagged with very low variability, SST anomalies being nearly concomitant between the extreme eastern and the central-eastern Pacific. A third of events are weakly lagged, in phase with the annual QSW, whose variability is much greater. Several months may elapse between the maximum SST anomalies east of the basin and along its equatorial central part. The last third of the events exhibits considerable variability, whether they are out of phase with the annual QSW or strongly lagged. The SST anomaly between 5°N and 20°N plays a key role in the maturation of the events out of phase. The events in phase (10% of the total population) are characterized by a negative SST anomaly in the central-eastern Pacific that reverses just before the maturation stage of ENSO. Sea water temperature 125 m deep in the central-eastern Pacific carries the earliest relevant information with a lead time of one year for forecasting the amplitude of unlagged ENSO while reporting how SST anomalies will develop until ENSO is fully developed. Besides, long-term forecast of the resumption of La Niña can be achieved accurately when weakly lagged events in phase with the annual QSW occur. The well differentiated typology of events vs. their time lag is the best clue to prove the leading role of the quadrennial QSW in the genesis of ENSO, while the related dynamic of the atmosphere ensues.  相似文献   

11.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years.  相似文献   

12.
Two adjacent bays in a large oligotrophic lake (Georgian Bay, Lake Huron) were compared to determine how the inputs from relatively pristine, but moderately humic, tributaries may influence phytoplankton, nutrients and system metabolism. Dissolved organic carbon (DOC) concentrations decreased from 4 to 5 gC m?3 at inner sites to 2 gC m?3 or less at outer sites. The concentration gradient from inner to outer was greater in the bay with a major tributary, and optical properties (intensity and slope of light absorption spectrum) showed there was a loss of material with allochthonous characteristics along the gradient. Chlorophyll a (Chl a) and total phosphorus (TP) were also higher at inner (2–4 mg Chl a m?3 and 8–12 mgP m?3, respectively) than outer sites (≤1 mg Chl a m?3 and 4–5 mgP m?3). Chl a and TP, as well as particulate nutrient ratios (C:P, C:N, N:P), indicated significant eutrophication at inner sites, especially in the bay with the tributary, and there was a strong positive Chl a-phosphorus relationship. The stable oxygen isotope ratio (18O:16O) of dissolved oxygen indicated greater influence of biological oxygen fluxes at inner sites (where ratios were 2–3 ppt below atmospheric equilibrium) than at outer sites (where ratios were within 0.5 ppt of equilibrium). Community photosynthesis:respiration ratios inferred from 18O:16O varied positively with Chl a and inorganic nutrients, but negatively with DOC. Altered loading of allochthonous organic matter can be expected under changing climate and development scenarios and will have significant influence on optical properties and system metabolism through changes in DOC in this coastal system. The effects will nonetheless be strongly modulated by any accompanying change in inorganic nutrients.  相似文献   

13.
A numerical simulation of very severe cyclonic storm ‘Phailin’, which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10–15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model ‘Weather Research and Forecasting’ (WRF) and ocean circulation model ‘Regional Ocean Modelling System’ (ROMS) components of the ‘Coupled Ocean-Atmosphere-Wave-Sediment Transport’ (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2–2.5 °C) and an increase in sea surface salinity (SSS) (2–3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to ?0.1 °C h?1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11–12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h?1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10?3 m s?1), rise in isotherms and isohalines along 85–88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.  相似文献   

14.
Soil is an essential resource for human livelihoods. Soil erosion is now a global environmental crisis that threatens the natural environment and agriculture. This study aimed to assess the annual rate of soil erosion using distributed information for topography, land use and soil, with a remote sensing (RS) and geographical information system (GIS) approach and comparison of simulated with observed sediment loss. The Shakkar River basin, situated in the Narsinghpur and Chhindwara districts of Madhya Pradesh, India, was selected for this study. The universal soil loss equation (USLE) with RS and GIS was used to predict the spatial distribution of soil erosion occurring in the study area on a grid-cell basis. Thematic maps of rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), crop/cover management factor (C), and conservation/support practice factor (P) were prepared using annual rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and a satellite image of the study area in the GIS environment. The annual rate of soil erosion was estimated for a 15-year period (1992–2006) and was found to vary between 6.45 and 13.74 t ha?1 year?1, with an average annual rate of 9.84 t ha?1 year?1. The percentage deviation between simulated and observed values varies between 2.68% and 18.73%, with a coefficient of determination (R2) of 0.874.  相似文献   

15.
The present study reports the analysis of GPS TEC prior to 3 earthquakes (M > 6.0). The earthquakes are: (1) Loyalty Island (22°36′S, 170°54′E) on 19 January 2009 (M = 6.6), (2) Samoa Island (15°29′S, 172°5′W) on 30 August 2009 (M = 6.6), and (3) Tohoku (38°19′N, 142°22′E) on 11 March 2011 (M = 9.0). In an effort to search for a precursory signature we analysed the land and ocean parameters prior to the earthquakes, namely SLHF (Land) and SST (Ocean). The GPS TEC data indicate an anomalous behaviour from 1–13 days prior to earthquakes. The main purpose of this study was to explore and demonstrate the possibility of any changes in TEC, SST, and SLHF before, during and after the earthquakes which occurred near or beneath an ocean. This study may lead to better understanding of response of land, ocean, and ionosphere parameters prior to seismic activities.  相似文献   

16.
Water resources and soil erosion are the most important environmental concerns in the Yangtze River basin, where soil erosion and sediment yield are closely related to rainfall erosivity. The present study explores the spatial and temporal changing patterns of the rainfall erosivity in the Yangtze River basin of China during 1960–2005 at annual, seasonal and monthly scales. The Mann–Kendall test is employed to detect the trends during 1960–2005, and the T test is applied to investigate possible changes between 1991–2005 and 1960–1990. Meanwhile the Rescaled Range Analysis is used for exploring future trend of rainfall erosivity. Moreover the continuous wavelet transform technique is using studying the periodicity of the rainfall erosivity. The results show that: (1) The Yangtze River basin is an area characterized by uneven spatial distribution of rainfall erosivity in China, with the annual average rainfall erosivity range from 131.21 to 16842 MJ mm ha?1 h?1. (2) Although the directions of trends in annual rainfall erosivity at most stations are upward, only 22 stations have significant trends at the 90 % confidence level, and these stations are mainly located in the Jinshajiang River basin and Boyang Lake basin. Winter and summer are the seasons showing strong upward trends. For the monthly series, significant increasing trends are mainly found during January, June and July. (3) Generally speaking, the results detected by the T test are quite consistent with those detected by the Mann–Kendall test. (4) The rainfall erosivity of Yangtze River basin during winter and summer will maintain a detected significant increasing trend in the near future, which may bring greater risks to soil erosion. (5) The annual and seasonal erosivity of Yangtze River basin all have one significant periodicity of 2–4 years.  相似文献   

17.
We reconstruct the environmental evolution of the East China Sea in the past 14 kyr based on glycerol dialkyl glycerol tetraethers(GDGTs) in a sediment core from the subaqueous Yangtze River Delta. Two primary phases are recognized. Phase I(13.8–8 cal kyr BP) reflects a predominantly continental influence, showing distinctly higher concentrations of branched GDGTs(averaged 143 ng/g dry sediment weight, dsw) than isoprenoid GDGTs(averaged 36 ng/g dsw), high BIT index(branched vs. isoprenoid tetraethers) values(0.78) and a fluctuating GDGT-0/crenarchaeol ratio(R_(0/5), varied from 0.52 to 3.81). Within this interval, temporal increases of terrestrial and marine influence are attributed to Younger Dryas(YD)(ca. 12.9–12.2 cal kyr BP) cold event and melt-water pulse(MWP)-1B(11.5–11.1 cal kyr BP), respectively. The prominent transition from 8 to 7.9 cal kyr BP shows a sharp decrease in BIT index value(0.4) and increase in crenarchaeol, which marks the beginning of phase II. Afterwards, the proxies remain relatively constant, which indicates that phase II(7.9 cal kyr BP-present) is a shelf sedimentary environment with high stand of sea level. Overall, the BIT index in our record serves as a good marker for terrestrial influence at the site, and likely reflects the flooding history of the region. The TEX_(86)(Tetra Ether Index of tetraethers consisting of 86 carbons) proxy is not applicable in phase I because of an excess terrestrial influence; but it seems to be valid for revealing the annual SST in phase II(21.6±0.9°C, n=49). In contrast, the MBT'/CBT(Methylation of Branched Tetraethers and Cyclization of Branched Tetraethers) proxy appears to faithfully record the annual mean air temperature(MAT)(14.3±0.63°C, n=68) and presents an integrated signal over the middle and lower Yangtze River drainage basin.  相似文献   

18.
Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (ENSO) and the Pacifical Decadal Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥?0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤?0.5°C). The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde.  相似文献   

19.
We investigated sea surface temperature (SST) variability over large spatial and temporal scales for the continental shelf region located off the northeast coast of the United States between Cape Hatteras, North Carolina, and the Gulf of Maine using the extended reconstruction sea surface temperature (ERSST) dataset. The ERSST dataset consists of 2°×2° (latitude and longitude) monthly mean values computed from in situ data derived from the International Comprehensive Ocean Atmosphere Data Set (ICOADS). Nineteen 2°×2° bins were chosen that cover the shelf region of interest between the years of 1854 and 2005. Mean annual and range of SST were examined using dynamic factor analysis to estimate trends in both parameters, while chronological clustering was used to determine temporal SST patterns and breakpoints in the time series that are believed to signal regime shifts in SST. Both SST and SST trend analysis show that interannual variability of SST fluctuations shows strong coherence between bins, with declining SST at the beginning of the last century, followed by increasing SST through 1950, and then rapidly decreasing between 1950 and mid-1960s, with somewhat warmer SST thereafter to present. Annual SST range decreases in a seaward direction for all bins, with strong coherence for interannual variability of range fluctuations between bins. The trend in SST range shows a decreasing range at the beginning of the last century followed by an increase in range from 1920 to the late-1980s, remaining high through present with some spatial variability. A more detailed spatial analysis was conducted by grouping the data into 7 regions using principal component analysis. We analyzed regional trends in mean annual SST, seasonal SST range (summer SST−winter SST), and normalized SST minima and maxima. Both the summer and winter seasons were also analyzed using the length of each season and amplitude of the warming and cooling season, respectively, along with the spring warming and fall cooling rates. Trends in all of the parameters were examined after low-pass filtering using a 10-point convolution filter (n=10 years) and regime shifts were identified using the sequential t-test analysis of regime shifts (STARS) method. The analysis shows some difference between regions in the timing of minimum SST with minima being reached 1 month earlier in the south (February) relative to more northern regions (March). Regional annual SST range decreased in a seaward direction. Amplitude of summer warming and the length of summer have shown fluctuations with recent years showing stronger warming and longer summers but generally not exceeding past levels. Overall, the difference in SST range, with recent larger values may be the most significant finding of this work. SST range changes have the potential to disrupt species important to local fisheries due to combinations of differing temperature tolerances, changes in reproduction potential, and changes in the distributional range of species.  相似文献   

20.
Glacier mass balance and secular changes in mountain glaciers and ice caps are evaluated from the annual net balance of 137 glaciers from 17 glacierized regions of the world. Further, the winter and summer balances for 35 glaciers in 11 glacierized regions are analyzed. The global means are calculated by weighting glacier and regional surface areas. The area-weighted global mean net balance for the period 1960?C2000 is ?270 ± 34 mm a?1 w.e. (water equivalent, in mm per year) or (?149 ± 19 km3 a?1 w.e.), with a winter balance of 890 ± 24 mm a?1 w.e. (490 ± 13 km3 a?1 w.e.) and a summer balance of ?1,175 ± 24 mm a?1 w.e. (?647 ± 13 km3 a?1 w.e.). The linear-fitted global net balance is accelerating at a rate of ?9 ± 2.1 mm a?2. The main driving force behind this change is the summer balance with an acceleration of ?10 ± 2.0 mm a?2. The decadal balance, however, shows significant fluctuations: summer melt reached its peak around 1945, followed by a decrease. The negative trend in the annual net balance is interrupted by a period of stagnation from 1960s to 1980s. Some regions experienced a period of positive net balance during this time, for example, Europe. The balance has become strongly negative since the early 1990s. These decadal fluctuations correspond to periods of global dimming (for smaller melt) and global brightening (for larger melt). The total radiation at the surface changed as a result of an imbalance between steadily increasing greenhouse gases and fluctuating aerosol emissions. The mass balance of the Greenland ice sheet and the surrounding small glaciers, averaged for the period of 1950?C2000, is negative at ?74 ± 10 mm a?1 w.e. (?128 ± 18 km3 a?1 w.e.) with an accumulation of 297 ± 33 mm a?1 w.e. (519 ± 58 km3 a?1 w.e.), melt ablation ?169 ± 18 mm a?1 w.e. (?296 ± 31 km3 a?1 w.e.), calving ablation ?181 ± 19 mm a?1 w.e. (?316 ± 33 km3 a?1 w.e.) and the bottom melt-21 ± 2 mm a?1 w.e. (?35 ± 4 km3 a?1 w.e.). Almost half (?60 ± 3 km3 a?1) of the net mass loss comes from mountain glaciers and ice caps around the ice sheet. At present, it is difficult to detect any statistically significant trends for these components. The total mass balance of the Antarctic ice sheet is considered to be too premature to evaluate. The estimated sea-level contributions in the twentieth Century are 5.7 ± 0.5 cm by mountain glaciers and ice caps outside Antarctica, 1.9 ± 0.5 cm by the Greenland ice sheet, and 2 cm by ocean thermal expansion. The difference of 7 cm between these components and the estimated value with tide-gage networks (17 cm) must result from other sources such as the mass balance of glaciers of Antarctica, especially small glaciers separated from the ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号