首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   

2.
Micro-FTIR spectroscopy of liptinite macerals in coal   总被引:3,自引:0,他引:3  
Reflectance FTIR microspectroscopy has been used to investigate the chemical structure of the liptinite macerals, alginite, bituminite, sporinite, cutinite and resinite in bituminous coals of Carboniferous to Tertiary age. In comparison with the spectra of vitrinite in the same coals, the micro-FTIR spectra of liptinite macerals are characterized by stronger aliphatic CHx absorptions at 3000–2800 and 1460–1450 cm−1, less intense aromatic C=C ring stretching vibration and aromatic CH out of plane deformation at 1610–1560 and 900–700 cm−1 respectively and various intense acid C=O group absorptions at 1740–1700 cm−1. The peaks at 1000–900 cm−1 due to aliphatic CH2 wagging vibrations in olefins and at 730–720 cm−1 due to CH2 rocking vibration in long chain aliphatic substances ([CH2]n, n≥4), are characteristic of liptinite macerals. Collectively the micro-FTIR spectral characteristics indicate that liptinite is composed of greater numbers of long chain aliphatics, fewer aromatics and a broader range of oxygen-containing groups than other macerals. Marked differences exist in micro-FTIR spectra within the liptinite maceral group. Alginite has the strongest aliphatic and least aromatic absorptions followed by bituminite, resinite, cutinite and sporinite. The aliphatic components in alginite are the longest chained and least branched whereas those in sporinite are the shortest chained and most branched. Bituminite, resinite and cutinite are intermediate. Notable differences in micro-FTIR spectra of individual liptinite macerals, such as intensities and peak locations of aromatic C=C in alginite, C=O groups in bituminite and resinite and substituted aromatic CH and C–O–C groups in cutinite and sporinite, also exist, which are attributed to differences in depositional environments or biotaxonomy.  相似文献   

3.
Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group’s IOM. The fraction of aromatic carbon increases as CR2 < CI1 < CM2 < Tagish Lake. The increases in aromatic carbon are offset by reductions in aliphatic (sp3) carbon moieties, e.g., “CHx,” and “CHx(O,N).” Oxidized sp2 bonded carbon, e.g., carboxyls and ketones grouped as “CO,” are largely conservative across these meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 < CI1 < CM2 < Tagish Lake. A pair of independent NMR experiments reveals that, on average, the aromatic moieties in the IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.  相似文献   

4.
Cross plarization magic-angle spinning 13C NMR spectra have been obtained on oil shales representing a variety of geologic ages, origins, depositional environments, and source locations. The spectra show variations in the aliphatic and aromatic carbon distributions of the oil shales and reveal correlations between aliphatic carbon contents and potential shale oil yields. Hints of additional fine structure are present in the spectra of some samples, and examples are given of the spectral resolution that may be obtainable on other solid samples of geochemical interest.  相似文献   

5.
Kerogen plays an important role in shale gas adsorption, desorption and diffusion. Therefore, it is necessary to characterize the molecular structure of kerogen. In this study, four kerogen samples were isolated from the organic-rich shale of the Longmaxi Formation. Raman spectroscopy was used to determine the maturity of these kerogen samples. High-resolution transmission electron microscopy (HRTEM), 13C nuclear magnetic resonance (13C NMR) , X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were conducted to characterize the molecular structure of the shale samples. The results demonstrate that VReqv of these kerogen samples vary from 2.3% to 2.8%, suggesting that all the kerogen samples are in the dry gas window. The macromolecular carbon skeleton of the Longmaxi Formation kerogen is mainly aromatic (fa’=0.56). In addition, the aromatic structural units are mainly composed of naphthalene (23%), anthracene (23%) and phenanthrene (29%). However, the aliphatic structure of the kerogen macromolecules is relatively low (fal*+falH=0.08), which is presumed to be distributed in the form of methyl and short aliphatic chains at the edge of the aromatic units. The oxygen-containing functional groups in the macromolecules are mainly present in the form of carbonyl groups (fac=0.23) and hydroxyl groups or ether groups (falO=0.13). The crystallite structural parameters of kerogen, including the stacking height (Lc=22.84 ?), average lateral size (La=29.29 ?) and interlayer spacing (d002=3.43 ?), are close to the aromatic structural parameters of anthracite or overmature kerogen. High-resolution transmission electron microscopy reveals that the aromatic structure is well oriented, and more than 65% of the diffractive aromatic layers are concentrated in the main direction. Due to the continuous deep burial, the longer aliphatic chains and oxygen-containing functional groups in the kerogen are substantially depleted. However, the ductility and stacking degree of the aromatic structure increases during thermal evolution. This study provides quantitative information on the molecular structure of kerogen samples based on multiple research methods, which may contribute to an improved understanding of the organic pores in black shale.  相似文献   

6.
An infrared routine has been developed to estimate the aliphatic portion of kerogen carbon in sedimentary rocks. The procedure does not require isolation of the organic matter and is based on a computer-assisted determination of global band areas in the region of the aliphatic carbon-hydrogen stretching vibrations around 2900cm−1. From these integrated absorptions the amount of aliphatic carbon Cal (mg of aliphatic carbon per gram of solvent-extracted rock) is calculated by means of a calibration with model rocks. Carbonate overtones which interfere in the case of limestones are eliminated by comparison to a CaCO3 standard.The method has been applied to rocks containing kerogens of different types and maturities at TOC levels of 0.5 to 12%. The aliphatic carbon concentrations range from 0.5 to 60mg·g−1 and correlate reasonably well with the residual genetic potentials of the rocks as measured by S2 values from Rock-Eval pyrolysis. The ratio S2/Cal is found to decrease with burial depth reflecting a maturity enhanced conversion of aliphatic carbon to fixed aromatic carbon under Rock-Eval conditions.  相似文献   

7.
Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected.Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported.Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.  相似文献   

8.
A rigorous calculation of the maximum fraction of aromatic carbon in humus or any other complex mixture of organic compounds is described. Input parameters include elemental composition, carboxyl content, carbonyl content, and an estimate of number-average molecular weight. The calculated upper limit constrains structural models that are based on interpretations of 13C-NMR spectra or on the products of degradation reactions and also directly limits the phenolic content of a sample.Another computational method is described that yields good estimates of the actual levels of aromatic (and aliphatic) carbon in a humus sample. Even though the method is capable of estimating only the most probable level of aromatic carbon, the predicted values are surprisingly close to the experimental values that have been determined by 13C-NMR spectroscopy.  相似文献   

9.
Covalent and non-covalent interaction of proteinaceous materials in soils and sediments has been suggested as an important mechanism for immobilizing nitrogen in numerous types of environments. In a previous study (Hsu P.-H., Hatcher, P.G., 2005. New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: A means for preservation. Geochimica et Cosmochimica Acta 69, 4521–4533), we provided molecular evidence for covalent, as well as non-covalent, bonding between 15N-labeled peptides and humic acid molecules using the 2D HSQC (heteronuclear single quantum coherence) NMR technique. In this report, we examine the influence of aromaticity and aliphaticity of peptides and humic materials on these covalent and non-covalent interactions. We use 2D NMR techniques to evaluate bonding interactions of 15N labeled peptides, having different aromatic and aliphatic properties, with three humic acids that vary in degree of aromaticity. The peptide containing primarily aromatic amino acid residues is observed to form covalent and non-covalent bonds with mainly aromatic-rich humic acids. The peptide composed of aliphatic amino acid residues shows, on the other hand, only bonding interactions with aliphatic-rich humic acids. These observations provide the first direct molecular evidence that aliphatic functional groups are involved in bonding with proteinaceous materials. The process may play an important role in sequestration of proteinaceous materials in sedimentary systems such as marine systems where the humic materials are mainly aliphatic in nature.  相似文献   

10.
Flame coal (Janina Mine, Poland) was an object of geochemical analyses for changes caused by the process of microbial desulphurisation. Ash content, beryllium, chromium, zinc, cobalt, lithium, manganese, copper, molybdenum, nickel, lead and vanadium concentrations were investigated in coal extracts, its macromolecular part, semi-coke and polar compound fractions of extracts and pyrolysates of crude and biodesulphurised coal density fractions. The macromolecular part of extracted density fractions was pyrolysed giving semi-coke and pyrolysate. These were separated into aliphatic hydrocarbons, aromatic and polar compounds by thin layer chromatography (TLC). Distributions of aliphatic and aromatic hydrocarbons in pyrolysates of the crude and desulphurised coal density fractions were compared by gas chromatography-mass spectrometry (GC-MS). Extracts, extracted density fractions, semi-coke and polar compound fractions were analysed for concentrations of trace elements. In the crude coal their concentrations in the macromolecular part are related only to coke. However, in the desulphurised coal the participation of the particular trace element increases in pyrolysate polar compound fractions. Its values are in the range from 1% (Mn) to 100% (Cr and Mo). These changes are the best seen in the 1.80-2.30×103 kg/m3 density fraction. Very high concentrations of trace elements were found in pyrolysate of desulphurised coal density fraction. This can be explained by the partial decomposition of coal macromolecule resulting from desulphurisation. Significant side-cleavage of peripheral groups and lighter aromatic hydrocarbons is possible. The effects of bacterial influence were manifested by the increase of polar compounds contents both in pyrolysates and extracts of the desulphurised coal and changes in distribution of aliphatic and aromatic hydrocarbon as pyrolytical products. These effects increase with mineral substance contents. Moreover, the increase of trace element concentration in coal organic matter occurs. It is reflected by the increase of participation of coal pyrolysate polar fraction in the total concentration of analysed elements in the macromolecular part of a given density fraction. The presented results are a part of the larger research aimed to find an influence of desulphurisation on chemical and technological properties of coal.  相似文献   

11.
Several lignite samples were collected from boreholes of the Amynteo opencast lignite mine, northern Greece. Organic geochemical characteristics were investigated with the help of various analytical techniques, comprising Gas Chromatography (GC) and Gas-chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared Spectroscopy (FTIR), solid-state Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, petrographical measurements as well as determination of bulk parameters. In the low rank (Rr = 0.21%) Amynteo lignites, huminite is the most abundant maceral group, inertinite has relatively low percentages and liptinite concentrations are rather high. Carbon Preference Index (CPI) reveals the predominance of odd-numbered, long-chained aliphatic hydro-carbons, which is related to a higher terrestrial plant input. The Pr/Ph ratio suggests that reducing conditions were persistent during peatification. Gymnosperm biomarkers such as isoprimarane, abietane, phyllocladane and sandaracopimarane, as well as angiosperm indicators (lupane) and hopanoid compounds with bacterial origin were identified. Analyses of the aromatic fractions revealed the presence of naphthalene, alkyl benzenes and phenols, pyrene, cadalene, cadinane, fluoranthene and dibenzofurane. Based on the FTIR analysis, aliphatic and oxygen containing structures were prevailed over the aromatic moieties. The intensity of the mineral bands was preferentially increased in the FTIR spectra of insoluble material. According to NMR analysis, the aliphatic carbons (0–50 ppm) have higher proportions comparing to aromatic carbons (100–160 ppm). The aromaticity fraction is low (fa = 0.32), as expected for these low rank coals. The presence of free organic radicals and Fe3+ and Mn2+ paramagnetic ions was revealed by EPR. In summary, the combined application of complementary analytical techniques allowed a deep inside into the geochemical characteristics of Amynteo lignites.  相似文献   

12.
Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/14N ratios contain N in the form of amine (-NH2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.  相似文献   

13.
Gilsonite, a naturally occurring asphaltite bitumen, consists of a complex mixture of organic compounds. In the present study, advanced one and two dimensional solid state and solution 1H, 13C and 15N nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were employed to investigate its composition and structure. 13C NMR yielded a carbon aromaticity of 27%. Aromatic moieties in gilsonite were primarily single rings or small clusters of fused rings. Half of the aromatic carbons of gilsonite can be accounted for by pyrroles. 15N and 13C cross polarization-magic angle spinning (CP-MAS) NMR showed that most nitrogen in gilsonite was pyrrolic. The aromatic rings were heavily substituted with alkyl chains, as evidenced by 1H13C correlation spectra. Advanced solid state NMR spectral editing techniques clearly identified specific functional groups such as CCH3, CCH2, and CCH2 (exomethylene). 1H13C wideline separation (WISE) NMR helped identify mobile and non-protonated alkyl carbons. FT-ICR-MS indicated that ∼64% of calculated formulae generated by ESI were aliphatic, while only about 0.8–2.5% of formulae contained possible aromatic rings. All of the assigned formulae contained at least one heteroatom (N, O or S), indicating that ionization by ESI was selective for the polar fraction of gilsonite and potentially less reflective of the overall chemical character of gilsonite than NMR spectroscopy. By combining the information obtained from advanced NMR and ultrahigh resolution MS we propose a structural model for gilsonite as a mixture of many pyrrolic and a few fused aromatic rings highly substituted with and connected by mobile aliphatic chains.  相似文献   

14.
A polymeric acid fraction has been isolated from Black Trona Water, a fossil water from the Green River Formation of Wyoming, by means of exhaustive dialysis. The polymeric acid is apparently of large molecular weight (>20,000) and constitutes 40–45% of the organic material in Black Trona Water from the DOE/LETC Black Water 1-A well. The fraction was investigated by means of 13C-NMR, FTIR, and fluorescence spectroscopy. Most of the carbon content is aliphatic (63%), with some aliphatic chains greater than 4 carbons in length. A substantial aromatic fraction exists consisting of condensed structures having 4–6 rings. The chemical nature of the polymeric acid fraction is compared to that of kerogen from the same formation.  相似文献   

15.
Six oil shales and their kerogen concentrates have been studied using 13C CP/MAS NMR techniques to study the distribution of organic carbon species. It is found that if the aromatic and aliphatic regions are divided at about 80 or 100 ppm, the apparent aromaticities of a raw shale and its kerogen concentrate are in good agreement. The presence of oxygen-substituted carbons in the raw shales and their depletion in the kerogen concentrates are observed and discussed.  相似文献   

16.
Six oil shales and their kerogen concentrates have been studied using 13C CP/MAS NMR techniques to study the distribution of organic carbon species. It is found that if the aromatic and aliphatic regions are divided at about 80 or 100 ppm, the apparent aromaticities of a raw shale and its kerogen concentrate are in good agreement. The presence of oxygen-substituted carbons in the raw shales and their depletion in the kerogen concentrates are observed and discussed.  相似文献   

17.
The Nuclear Waste Management Organization (NWMO) is developing a Deep Geological Repository (DGR) to contain and isolate used nuclear fuel in a suitable rock formation at a depth of approximately 500 m. The design concept employs a multibarrier system, including the use of copper-coated used fuel containers, surrounded by a low-permeability, swelling clay buffer material within a low permeability, stable host rock environment. The natural organic matter (NOM) composition of the bentonite clays being considered for the buffer material is largely uncharacterized at the molecular-level. To gain a better understanding of the NOM in target clays from Wyoming and Saskatchewan, molecular-level methods (biomarker analysis, solid-state 13C NMR and solution-state 1H nuclear magnetic resonance (NMR)) were used to elucidate the structure and sources of NOM. Organic carbon content in three commercially available bentonites analyzed was low (0.11–0.41%). The aliphatic lipid distribution of the clay samples analyzed showed a predominance of higher concentration of lipids from vascular plants and low concentrations of lipids consistent with microbial origin. The lignin phenol vanillyl acid to aldehyde ratio (Ad/Al) for the National sample indicated an advanced state of lignin oxidation and NOM diagenesis. The 13C NMR spectra were dominated by signals in the aromatic and aliphatic regions. The ratio of alkyl/O-alkyl carbon ranged from 7.6 to 9.7, indicating that the NOM has undergone advanced diagenetic alteration. The absence lignin-derived phenols commonly observed in CuO oxidation extracts from contemporary soils and sediments as well as the lack of amino acids suggests that the material corresponding to the aromatic signal is not composed of lignin or proteins but may be derived from another source such as black carbon or some other non-extractable aromatic-rich NOM. The aliphatic signal appears to correspond to long-chain compounds with little side branching based on the results of the one-dimensional (1D) and two-dimensional (2D) solution-state 1H NMR analyses. Overall, the organic geochemical analyses suggest that the NOM is composed mainly of plant-derived waxes and highly aromatic carbon with low contributions from small molecules. The compounds identified by the molecular-level analysis of NOM in the clay samples are hypothesized to be recalcitrant but future studies should examine if these compounds may serve as a microbial substrate to further test the observations of this study. Furthermore, our study suggests that the NOM has undergone diagenesis and that marine NOM signatures are no longer recognizable or detectable. As such, future work may also examine the diagenesis of these deposits to further understand the NOM geochemistry and paleoenvironmental conditions in bentonite deposits.  相似文献   

18.
A 13-step alkaline permanganate degradation of Bulgarian oil shale kerogen concentrate at ambient temperature was carried out. A high yield of oxidation products (90.1%) and a low yield of gaseous products (2.79%) were obtained. IR and 1H NMR spectroscopic studies have shown that two significantly different types of high molecular products are present in kerogen. Further oxidation of these structures leads to the formation of low molecular aliphatic and aromatic acids, proven by gas chromotography (GC) and gas chromatography-mass spectrometry (GC-MS). The data obtained at these mild conditions allow us to acquire detailed information about the aromatic structures and polymethylene chain lengths in kerogen.The 5-step oxidation of the kerogen at 90 °C provides information about stable aromatic structures. Soluble and insoluble polyfunctional acids in acid medium have close molecular masses and spectral characteristics. The amount of benzene and naphthalene carboxylic acids is 11.3% of the organic matter of the oil shale.  相似文献   

19.
CPMAS 13C NMR spectra of two estuarine sedimentary humic acids were recorded on a Bruker WP-SY 200 spectrometer. Both samples were found to contain similar aromatic and aliphatic carbon fractions. The sedimentary humic acids have unusually high methoxyl contents and more than one type of methoxyl is indicated. The high methoxyl content may be related to relatively low values for estuarine sedimentary humic acid-metal complexes. Carbohydrate contents of the humic acid samples were also found to be low.  相似文献   

20.
《Organic Geochemistry》1987,11(2):91-101
Nuclear magnetic resonance (NMR) techniques have been applied to the structural characterization of humic substances isolated from an organic-rich sediment in Loch Thurnaig, northwest Scotland. Both the sedimentary humic acid (SHA) and sedimentary fulvic acid (SFA) fractions from Loch Thurnaig contained substantial quantities of carboxylic and alkyl carbon with a small contribution (26 and 22% respectively) of aromatic/olefinic carbon atoms. The latter structures were shown by dipolar dephasing 13C NMR to be largely non-protonated. Differences in the alkyl structures of the two fractions were noted, with the SHA containing a larger amount of branched chain aliphatic material. As branched chain compounds are more resistant to microbial degradation than straight chain compounds, this may indicate that SHA is the older, more refractory fraction of the sedimentary organic matter, although it is possible that the results reflect different algal precursor material. The fraction of aromatic carbon was higher in the SHA than in the SFA as is generally found for humic and fulvic acids isolated from the same source. The low aromaticities and highly branched aliphatic structures show that the sedimentary humic substances from the loch resemble dissolved marine humic substances rather than their terrestrial counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号