首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
德兴铜矿是中国东部重要的大型斑岩铜矿,由朱砂红、铜厂和富家坞等3个矿床组成。在详细的野外脉体填图基础上,文章把德兴铜厂斑岩铜矿的成矿脉体划分为A脉、B脉、D脉和H脉等4种类型。研究发现,A脉的形成与钾化蚀变有关,脉体不规则且不连续,以粒状石英±钾长石±黑云母±磁铁矿±少量黄铁矿±少量黄铜矿的矿物组合为特征;B脉的形成与钾质硅酸盐水解有关,脉体较规则且连续,以石英±辉钼矿±黄铜矿±黄铁矿的矿物组合为特征,石英颗粒呈典型的梳状或长柱状对称于脉壁生长;D脉的形成与石英-绢云母化蚀变有关,以黄铁矿±石英±黄铜矿的矿物组合为特征,脉壁发育绢云母晕;H脉的形成与碳酸盐化有关,以方解石±赤铁矿±黄铁矿±黄铜矿的矿物组合为特征。这4种脉体分别记录了成矿流体演化至不同阶段,热液蚀变作用的特点及其与Cu-Mo硫化物沉淀的关系。脉体的宽度-间距定量统计分析表明,脉体宽度(T)服从于幂次分布定律;脉体间距(S)服从于负指数分布或介于对数正态分布与负指数分布之间。脉体宽度分维值D值(0.91~1.35)普遍>1,反映脉体系统的连通性较差,矿化程度较弱。脉体间距变差系数Cν值(0.49~0.92)均<1,说明脉体簇生聚集程度较低,矿化程度较弱;处于脉体聚集中心的脉体,代表着热液流体运移的通道,制约着其他脉体的展布。  相似文献   

2.
Vein distributions in line samples from four epithermal Au–Ag deposits of the Hauraki Goldfield were logged and quantified by vein spacing, vein density, vein thickness and percentage of vein extension. One deposit is hosted in andesite lavas (Martha Hill), one in andesite lavas and dacite porphyry, dacitic tuffs and pyroclastic breccias (Golden Cross), and two in rhyolite lavas and rhyolitic tuffs with minor andesite lavas or andesite dikes (Ohui and Wharekirauponga). The vein systems in these deposits form fault-controlled arrays of extensional veins. Vein spacing distributions are non-fractal over two to three orders of magnitude (1 mm to 5 m), and therefore fractal dimension statistics are not applicable. The coefficient of variation (Cv) of vein spacing was used as a measure of the degree of vein clustering. Rock type has a marked influence on vein spacing distributions, with veining in rhyolite lava having lower average thickness and percentage extension, but a generally higher degree of vein clustering compared with veining in andesite lava in the same deposit. Vein spacing distributions in well-jointed lithologies, mainly andesite lava, have Cv values (0.8–1.2) that are indicative of anticlustered to weakly clustered patterns, particularly in the vein stockwork of the upper part of the Golden Cross deposit. These Cv values are consistent with field observations that joints are a major control on vein spacing. In the poorly jointed dacitic and rhyolitic rocks, the veins are weakly to strongly clustered as shown by higher Cv values (1.2–2.4), and are commonly associated with normal faults. Overall, andesite lava and dacite porphyry and pyroclastics host thicker and more persistent veins than rhyolite lava and tuff. These larger veins contain significant volumes of high-grade gold mineralisation. The higher chemical reactivity to hydrothermal fluids of andesite and dacite compared with rhyolite may have aided propagation and thickening of the veins in andesite-hosted deposits. Within an individual epithermal deposit, location close to thick veins, representing major fluid conduits, commonly overrides the effect of different lithologies. Sites that are deeper and located within or adjacent to major vein structures have higher average vein thickness, percentage extension and degree of vein clustering. Systematic collection and analysis of vein spacing, thickness and density data can be used to define trends that are useful in the exploration of gold-bearing epithermal vein deposits. Received: 25 August 1998 / Accepted: 23 December 1999  相似文献   

3.
Gold-bearing veins within the Liese zone of the Pogo deposit display a two-stage evolutionary history that records temporal variation in kinematics, fluid chemistry and temperature. Several stacked shallow northwest-dipping shear veins are developed at Pogo, and collectively comprise the Liese Zone. Veins consist of: (1) early, narrow biotite-bearing shear veins; (2) white quartz veins with pyrite-arsenopyrite bands, referred to as main stage quartz veins, that have sericite-Fe-Mg carbonate alteration envelopes and which exploit the early shear veins; and (3) extension veins that form as steeper offshoots from the main stage veins. The presence and orientation of oblique fabrics developed in the older biotite-bearing shear veins are indicative of top-to-the-south displacement under ductile to semi-brittle conditions at higher temperatures. In contrast, the orientation of the extension veins and local sigmoidal shapes indicate a component of top-to-the-northwest normal displacement on the main stage veins in their present orientation, and brittle to semi-brittle conditions of formation. Dolomite-sericite alteration surrounding main stage veins may represent late to post-mineral hydrothermal fluid exploitation of vein margins during ongoing normal displacement along vein systems. All types of veining overprint 107–106 Ma, post-metamorphic granitic dykes. Molybdenite in main stage quartz assemblages has returned Re-Os ages of 104.2±1.1 Ma, significantly older than 96 to 91 Ma 40Ar/39Ar ages obtained from vein alteration assemblages that may reflect thermal resetting during post-mineral fault related hydrothermal activity, magmatism and/or retrograde cooling of the lithologic sequence. Unlike typical mesothermal shear vein hosted gold systems, Pogo is temporally and tectonically separated from metamorphic deformation events, and has a comparable kinematic and geometric architecture to Cretaceous plutonic gold deposits in the region. We interpret the deposit to have formed during a regional Cretaceous extensional event during multi-stage exploitation of extensional fault surfaces by hydrothermal fluid from a cooling magmatic source.Editorial handling: S.G. Hagemann  相似文献   

4.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

5.
Centimetre‐ to decimetre‐wide quartz+calcite veins in schistes lustrés from Alpine Corsica were formed during exhumation at 30–40 Ma following blueschist facies metamorphism. The δ18O and δ13C values of the veins overlap those of the host schistes lustrés, and the δ18O values of the veins are much higher than those of other rocks on Corsica. These data suggest that the vein‐forming fluids were derived from the schistes lustrés. Fluids were probably generated by reactions that broke down carpholite, lawsonite, chlorite and white mica at 300–350 °C during decompression between c. 1400 and 800 MPa. However, the δ18O values of the veins are locally several per mil higher than expected given those of their host rocks. The magnitude of oxygen isotope disequilibrium between the veins and the host rock is inversely proportional to the δ18O value of the host rock. Additionally, calcite in some schists is in isotopic equilibrium with calcite in adjacent veins, but not with the silicate fraction of the schists. Locally, the schists are calcite bearing only within 1–20 cm of the veins. The vein‐forming fluids may have been preferentially derived from calcite‐bearing, high‐δ18O rocks that are common within the schistes lustrés and that locally contain abundant (>15%) veins. If the fluids were unable to completely isotopically equilibrate with the rocks, due to relatively rapid flow at moderate temperatures or being confined to fractures, they could form veins with higher δ18O values than those of the surrounding rocks. Alteration of the host rocks was probably inhibited by isolation of the fluid in ‘quartz‐armoured’ veins. Overall, the veins represent a metre‐ to hectometre‐scale fluid‐flow system confined to within the schistes lustrés unit, with little input from external sources. This fluid‐flow system is one of several that operated in the western Alps during exhumation following high‐pressure metamorphism.  相似文献   

6.
河南省文峪金矿通过信息综合趋势分析认为在水平方向上505矿脉是成矿元素地球化学场的中心带,向两侧减弱.随着深度的增加,地球化学场中心带开始向北(530脉)转移.垂直方向上,530脉,从现在生产标高向深部,Au品位和矿体厚度将呈下降趋势,但在深部相对富矿段预测为x=46.20~46.40范围.分析结论被后来生产勘探所证实,并获得大量的工业储量,表明该方法是可行的  相似文献   

7.
This work deals with structural and geochemical (chemical and isotopic) analyses of calcite veins hosted in Carrara marbles in the Alpi Apuane, NW Tuscany, Italy. Geometric features and spatial distribution of veins provided estimations of stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (Δsi = Pf − σ3) at the time of vein formation. The obtained values of Φ = 32 and R′ = 0.43 reveal that fluid pressure was higher than the intermediate principal stress at the time of veins formation, whereas the estimated Δsi ranging from 129 to 207 MPa indicates that veins formed under supra-hydrostatic to lithostatic pressure conditions. Carbon (δ13CV-PDB = 1.81–2.10‰ for veins and 1.95–2.51‰ for host marbles), oxygen (δ18OV-SMOW = 28.71–29.57‰ for veins and 28.90–29.36‰ for host marbles) and strontium (87Sr/86Sr = 0.707716–0.707985 for veins and 0.0707708–0.707900 for host marbles) isotope compositions in vein/host marble pairs were internally quite consistent. Combining our structural and geochemical data, a modeling approach was performed to investigate the compositional features and temperatures of calcite depositing fluids. The results of our studies give evidence that (1) pore-fluids in Carrara marble, consisting of metamorphic formation waters, were re-mobilized during veining event and migrated within the veins in closed system conditions, (2) veins formed after ductile folding phases and before high-angle brittle faulting events, at temperature and pressure around 250 °C and 210 MPa, and finally (3) about 12 g H2O/m3 marble are calculated to have been available as vein parental fluid at the time of vein formation.  相似文献   

8.
Orogenic gold vein deposits in the Xiaoqinling district are situated in a basement-cored uplift along the southern margin of the North China craton. The deposits are hosted by Late Archean to Paleoproterozoic amphibolite-facies country rocks, varying in lithology from clastic and chemical sedimentary units to felsic and mafic volcanic rocks and plutons. Absolute and relative age relationships indicate a late Mesozoic emplacement of the lodes, which is subsequent to the deformation associated with the Middle to Late Triassic Qinling orogen along the craton margin. All auriferous quartz veins are hosted in faults. The ores are generally composed of quartz veins with various amounts of pyrite, galena, chalcopyrite, sphalerite, and carbonates. Mineralization can be separated into three distinct stages.

Ore fluids are H2O dominant, with approximately 20 to 30 and 10 to 20 mole% CO2 for gold-bearing stage I and II veins, respectively. Vein formation pressures and temperatures were 2.2 kbar and 300 to 370°C for stage I and 1.6 kbar and 250 to 320°C for stage II. The narrow range of δ18O values for ore fluids from the deposits throughout the Xiaoqinling district indicate a common deep fluid source, most likely of magmatic origin. The 34S data suggest sulfur originated from a magmatic fluid of approximately 2 ± 2%, with significant local sulfur contributions leading to large variations in the ore-stage sulfide minerals. The most probable mechanism for the deposition of gold is phase separation caused by the partial loss of volatiles such as CO2 and CH4.  相似文献   

9.
The Lavrion ore district contains carbonate-replacement and vein-type Pb–Zn–Ag deposits as well as low-grade porphyry Mo, Cu–Fe skarn, and minor breccia-hosted Pb–Zn–Cu sulfide mineralization. These ore types are spatially related to a Late Miocene granodiorite intrusion (7 to 10 Ma), and various sills and dikes of mafic to felsic composition. Samples of sphalerite and pyrite from the Ilarion carbonate replacement deposit, and galena from Vein 80 (vein-type mineralization) in the Adami deposit show heterogeneous Re–Os values. These values were partially disturbed by hydrothermal activity associated with the formation of hydrothermal veins (e.g., Vein 80). A plot of initial 187Os/188Os versus 1/Oscommon ratios for pyrite and sphalerite from the Ilarion deposit form a mixing line (r2?=?0.78) between high concentration crustal-like and low concentration mantle-like end-members, or two crustal end-members one of which was more radiogenic than the other. Based on the Re–Os systematics and previously published geological and geochemical evidence, the most plausible explanation for the Re–Os isotope data is that ore-forming components were derived from mixed sources, one of which was a radiogenic crustal source from schists and carbonates probably near intrusion centers and the other, intrusive rocks in the district that are less radiogenic. Although the Re and Os concentrations of galena from Vein 80 are above background values they cannot be used as a chronometer. However, the results of the current study suggest that although pyrite, sphalerite, and galena are poor geochronometers in this ore deposit, due to partial open-system behavior, they still yield valuable information on the origin of the source rocks in the formation of bedded replacement and vein mineralization in the Lavrion district.  相似文献   

10.
Auriferous quartz veins in the Hill End goldfield, NSW, Australia, comprise bedding-parallel vein sets and minor extension and fault-controlled veins which are hosted by a multiply deformed, Late Silurian slate-metagreywacke turbidite sequence. Fluid inclusions in quartz, either from bedding-parallel veins or from narrow, steeply N-dipping veins (‘leader’ veins) indicate a similar range in homogenisation temperatures (Th) from 350°C to 110°C. Within this range, Th data demonstrate five groupings in the temperature intervals 350–280°C, 280–250°C, 250–190°C, 190–150°C, and 150–110°C, corresponding to a variety of primary and secondary inclusions developed during five periods of vein growth under a generally declining temperature regime. Inclusion fluids are characterised by a low salinity of around 0.1 to 3.6 wt% NaCl equivalent. Laser Raman microprobe inclusion analysis indicates that gas-phase compositions relate to the paragenetic stage of the host quartz. H2O(g) and N2 dominate in the primary inclusions from barren, Stage I quartz; CH4 and CH4 + H2O(g) are important in inclusions related to the early gold forming events (equivalent to Stages II and III quartz), but inclusions developed during the last episode of gold deposition are characterised by H2O(g), CO2-rich and liquid-CO2 bearing fluids. Precipitation of gold was aided by sulphidation reactions or phase separation in response to periods of vein opening. Late in the paragenesis, gold deposition may have been promoted by oxidation of the ore fluid.  相似文献   

11.
Statistical analysis of the vein thickness distributions of veins in the Cambrian Hellyer volcanic-hosted massive sulfide deposit, Australia, indicates that the vein thickness data conform to power-law distributions characterised by fractal dimensions D. The most intensely mineralised vein type is characterised by a low fractal dimension, whereas weakly mineralised or barren vein types have elevated D-values. The observed differences in the fractal dimensions suggest that the study of vein thickness distributions may provide a tool in exploration. It is also shown that the field observations can be explained by a model linking the fractal dimensions of the vein thickness distributions with the mechanisms responsible for the formation and evolution of the vein systems.  相似文献   

12.
《Journal of Structural Geology》2004,26(6-7):1275-1291
The Indarama lode gold deposit is hosted by vertically-dipping basalt in the Late Archaean Midlands Greenstone Belt of Zimbabwe. Major deformation events at 2.68 and 2.58 Ga established a complex array of fractures. A limited range of orientations of this fracture network opened towards the end of the younger deformation event, creating a lode pattern where 92% of mineralised veins dip at less than 50°, mainly to the E and W, and most strike directions are represented. A clustered distribution of poles to the quartz–carbonate veins indicates a constrictional stress field at the time of vein opening where σ1 and σ2 were near horizontal, (directed NNW–SSE and ENE–WSW, respectively), and σ3 was near vertical. 3-D Mohr circle analysis demonstrates that σ2 was approximately 67% of σ1 (the stress ratio) and that the driving pressure ratio (R′) was approximately 0.4, reflecting the role of fluid pressure, mean stress, and the maximum shear stress in controlling conditions of fracture opening.  相似文献   

13.
Nodular, cryptocrystalline, weathering-derived magnesite deposits in the New England Orogen, Australia, provide a significant source of high-purity magnesite. Common textural features and related isotopic fingerprints indicate a close genetic relationship between weathering-derived magnesite deposits hosted by ultramafic rocks at Attunga and by sediments at Kunwarara while silica-carbonate rock alteration and rare hydrothermal magnesite vein deposits reflect contrasting conditions of formation. Localised weathering of carbonates in a soil environment shifts stable isotopic composition towards low δ 13C and high δ 18O typical for weathering-derived magnesites while intrusion-related fluids do not significantly change the isotopic composition of affected carbonates. At Attunga, magnesite consists of irregular, nodular veins and masses filling faults and cracks in the weathered serpentinite host rock as well as soft powdery magnesite in pervasive serpentinite alteration zones. The high-grade magnesite at Attunga can be contaminated by amorphous silica and serpentine relicts but does not contain dolomite or ferroan magnesite as observed for its hydrothermal equivalent, the Piedmont magnesite deposit, or other widespread deposits of silica-carbonate rock in the Great Serpentinite Belt. Heavy δ 18O values are compatible with a supergene formation from meteoric waters while low δ 13C suggests C3-photosynthetic plants as the predominant source of carbon for the Attunga magnesites. We infer that weathering-derived, nodular magnesite deposits hosted in ultramafic rocks like the Attunga magnesite deposit have formed in a two-step process involving the hypogene formation of a pre-cursor magnesite deposit and complete supergene overprinting by meteoric waters that acquired carbon from percolation through soil.  相似文献   

14.
Precious metals accompany all types of epithermal deposits. In general, the largest of these deposits occur in intrusive or extrusive rocks of alkaline or calc-alkaline affinity. The Apigania Bay vein system and Au–Ag mineralization is hosted in Mesozoic marbles and schists, and is composed primarily of five nearly parallel, high-angle quartz veins that extend for at least 200 m. Gold–silver mineralization, in association with more than thirty ore and vein minerals, is developed in three stages and occurs at the contact of marbles and schists. Zones of epidote–chlorite–calcite and sericite–albite alteration are associated with precious metal-bearing milky and clear quartz veins. Fluid inclusion studies suggest that hydrothermal mineralization was deposited under hydrostatic pressures of ~100 bars, at temperature of 120–235°C, from low to moderate, calcium-bearing, saline fluids of 0.2 to 6.8 equiv. wt.% NaCl. Calculated isotope compositions (δ18O?=??4.7‰ to 1.7‰ and δD?=??120‰ to ?80‰) for waters in equilibrium with milky and clear quartz are consistent with mixing with dilute, low temperature meteoric ore fluids. Calculated δ 13CCO2 (0.6‰ to 1.1‰) and δ 34SH2S (?7.3 to ?0.3‰) compositions of the ore fluids indicate exchange, in an open system, with a metasedimentary source. Gold and silver deposition was associated with degassing of hydrogen due to intense uplift of the mineralizing area. The physicochemical conditions of mineralization stages I to III range between 200°C and 150°C, $f_{{\text{S}}_2 } = 10^{ - 18.1} $ to 10?16.8, $f_{{\text{O}}_2 } = 10^{ - 44.0} $ to 10?41.5, pH?=?6.9 to7.6, $f_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 3.4} $ to 10?2.6 and $a_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 2.7} $ to 10?2.6. Apigania Bay could be possibly considered the latest evolutional phase of Tinos hydrothermal system.  相似文献   

15.
The Sandaowanzi epithermal gold deposit (0.5 Moz or ca. 14 tons), located at the northern edge of the Great Xing'an range, NE China, is unique in that nearly all the gold (> 95%) is contained in gold tellurides mostly in bonanza grade ore shoots (the highest grade being up to 20,000 g/t). The bonanza ores are hosted in the central parts of large-scale (> 3 m wide, 200 m long) quartz veins which crosscut Early Cretaceous andesitic trachyte and trachytic andesite, and are, in turn, crosscut by diabase dykes of similar age. There are two ore types: low-grade disseminated ores and high-grade vein ores. In the former, very fine grains of Ag-rich tellurides (mainly hessite and petzite) coexist with sulfides (pyrite, sphalerite, galena and chalcopyrite), occurring as disseminated grains or sometimes as grain aggregates. In the high-grade vein ores, coarse-grained Au–(Ag)–tellurides (calaverite, sylvanite, krennerite, and petzite) form a major part of quartz–telluride veins. Chalcopyrite forms separate monomineralic veins emplaced within the quartz–telluride veins. Spectacular textures among coarse-grained (up to 3 cm in diameter) tellurides, and micron-scale bamboo shoot-like grains are observed. Two- and three-phase telluride symplectites are common in the vein ores.Fluid inclusion studies suggest that the mineralizing fluids are a mixture of magmatic and meteoric fluids, that homogenized in the temperature range of 260–280 °C. Sulfur isotope compositions of pyrite and chalcopyrite (δ34S − 1.64 to 1.91‰) support the origin of fluids from a deep source. It is suggested that faulting, temperature changes and variation in fS2 and fTe2 were major factors contributing to the two main types of mineralization and the differences between them. Early rapid cooling and subsequent slow cooling of the later fluids along fault and fracture zones were instrumental in formation of the two superposed ore types. Open-space filling and crack-sealing along fractures predominates over replacement during telluride mineralization. The Sandaowanzi deposit is a unique bonanza-grade accumulation of gold tellurides genetically related to subalkaline magmatism, which was genetically associated with Early Cretaceous regional extension.  相似文献   

16.
东坪金矿成矿时代研究   总被引:20,自引:2,他引:20       下载免费PDF全文
东坪金矿是我国在碱性岩中发现的第一个大型金矿,本文在详细野外观察的基础上,用K-Ar法、~(40)Ar/~(39)Ar法测定了成矿期花岗细晶岩脉、主成矿期矿石的同位素年龄,确定东坪金矿成矿时代为燕山期。  相似文献   

17.
The Gemericum is a segment of the Variscan orogen subsequently deformed by the Alpine–Carpathian orogeny. The unit contains abundant siderite–sulphide and quartz–antimony veins together with stratabound siderite replacement deposits in limestones and stratiform sulphide mineralization in volcano-sedimentary sequences. The siderite–sulphide veins and siderite replacement deposits of the Gemericum represent one of the largest accumulations of siderite in the world, with about 160 million tonnes of mineable FeCO3. More than 1200 steeply dipping hydrothermal veins are arranged in a regional tectonic and compositional pattern, reflecting the distribution of regional metamorphic zones. Siderite–sulphide veins are typically contained in low-grade (chlorite zone) sedimentary, volcano-sedimentary or volcanic Lower and Upper Paleozoic rocks. Quartz–antimony veins are hosted by higher-grade units (biotite zone). Siderite–sulphide veins are dominated by early siderite followed by a complex set of stages, including quartz–sulphide (chalcopyrite, tetrahedrite), barite, tourmaline–quartz, and sulphide-remobilization stages. The temporal evolution of these stages is difficult to study because of the widespread and repeated tectonic processes, within-vein replacement and recrystallization. Siderite–sulphide veins show considerable vertical (up to 1200 m) and lateral (up to 15 km) extent, and a thickness typically reaching several metres. Carbonate-replacement siderite deposits of the Gemericum are hosted by a Silurian limestone belt and are similar to stratabound siderite deposits of the Eastern Alps (e.g., Erzberg, Austria).Based on a review of geological, petrological and geochronological data for the Gemericum, and extensive stable and radiogenic isotope data and fluid inclusion data on hydrothermal minerals, the siderite–sulphide veins and siderite replacement deposits are classified as metamorphogenic in a broad sense. The deposits were formed during several stages of regional crustal-scale fluid flow. Isotope (S, C, Sr, Pb) fingerprinting identifies the metamorphosed rock complexes of the Gemericum as a source of most components of hydrothermal fluids. Fluid inclusion and stable isotope data evidence the participation of several contrasting fluid types, and the existence of contrasting PT conditions during vein evolution. A high-δ18O, medium- to high-salinity, H2O-type fluid is the most important component during siderite deposition, whereas H2O–CO2-type fluid inclusion containing dense liquid CO2 and corresponding to minimal pressures between 1 and 3 kbar were found in a younger tourmaline–quartz stage. Younger quartz–ankerite(±siderite)–sulphide stages are characterized by high-salinity (17 to 35 wt.% NaCl equivalent) and low-temperature (Th=90 to 180 °C) H2O-type fluids.The vein deposits are interpreted as a result of multistage hydrothermal circulation, with Variscan and Alpine mineralization phases. Based on available indirect data, the most important mineralization phase was related to regional fluid flow during the uplift of a Variscan metamorphic core complex, producing siderite–sulphide (±barite) mineralization, while tourmaline–quartz stage and sulphide remobilization stages are related to Alpine processes. Two phases of vein evolution are evident from two groups of 87Sr/86Sr isotope ratios of Sr-rich, Rb-poor hydrothermal minerals: 0.71042–0.71541 in older barite and 0.7190–0.7220 in late-stage celestine and strontianite.  相似文献   

18.
Complex (δ18O, δ13C, 87Sr/86Sr, 143Nd/144Nd, and REE composition) data were obtained on quartz-carbonate veins in metasedimentary rocks to elucidate the material sources and to evaluate fluid regime during low-sulfide gold-quartz ore mineralization at the Sukhoi Log deposit. In order to use an oxygen isotopic thermometry for quartz veins, we calibrated empirical dependence of fractionation factors between vein quartz and altered wall rocks. The temperature range of quartz equilibration with wall rocks was evaluated at 380–190°C. Independent temperatures obtained using this thermometer indicate that the vein ankerite can be both earlier and later than vein quartz. The isotopic systematics (δ13C and δ18O) of ankerite in the quartz-carbonate veins, carbonates in the ore-hosting shales of the Khomolkho and Imnyakh formations both within and outside mineralized zones at the deposit indicate that the ore-hosting rocks and veins in the mineralized zone contain incoming carbonate, which was most probably borrowed from the carbonate rocks of the Imnyakh Formation. REE composition of vein ankerite shows that these elements were transported by fluid as carbonate complexes. The behavior of the Eu/Eu* and (La/Yb)n ratios and Mn of the vein ankerite suggest that during carbonate crystallization the system was closed with respect to fluid. Sr-Nd isotope systematics indicates that the isotopic parameters of the vein ankerite were formed with the participation of metasedimentary host rocks of both the Imnyakh and Khomolkho formations, which are contrastingly different in Nd isotopic composition. A fluid/rock ratio during metasomatic processes in the wall rocks was calculated for two scenarios of their thermal history: with a continuously operating heat source beneath the Sukhoi Log structure and with a linear cooling of the structure. The effective integral W/R ratios calculated lie within the range of 0.046–0.226 and suggest that the veins were produced with the metamorphic fluid. Low W/R ratios are inconsistent with the mechanism of vein quartz crystallization due to fluid oversaturation with respect to SiO2 at decreasing temperature. We believe that the main mechanism responsible for the origin of these veins was variations of fluid oversaturation due to pressure variations (pressure solution mechanism). This hypothesis is consistent with the reported isotopic-geochemical characteristics of the wall rocks at the Sukhoi Log deposit.  相似文献   

19.
The Julie deposit is currently the largest gold prospect in NW Ghana. It is hosted in sheared granitoids of TTG composition of the Paleoproterozoic Julie greenstone belt. The main mineralization consists of a corridor of gold-bearing quartz veins forming a network of a few tens of metres in thickness, trending E–W and dipping 30–60° N, contained within the main shear zone that affects these rocks. The core of this vein corridor is altered by sericite, quartz, ankerite, calcite, tourmaline and pyrite, and is surrounded by an outer halo consisting of albite, sericite, calcite, chlorite, pyrite and rutile. A second set of veins, conjugate to the first set, occurs in the area. These veins have alteration halos with a similar mineralogy as the main corridor, however, their extent, as well as the size of the mineralization, is less important. In the main corridor, gold forms micron-sized grains that occur in pyrite as inclusions, on its edges, and in fractures crosscutting it. Silver, tellurium, bismuth, copper and lead commonly accompany the gold. Pyrite occurs disseminated in the veins and in the surrounding rocks. Up to several ppm Au occurs in the structure of pyrite from the main mineralization.  相似文献   

20.
The Caxias gold deposit, located in the São Luís Craton, is hosted by a steeply dipping strike-slip shear zone crosscutting schists and a fine-grained, hydrothermally altered tonalite (Caxias Microtonalite). Petrography and whole-rock geochemistry have characterized both pelitic and mafic protoliths for the hosting schists. The Caxias Microtonalite shows major and trace element behavior compatible with modern calc-alkaline, metaluminous, subduction-related granitoids. Geochronological studies on the Caxias Microtonalite have defined a minimum crystallization age of 1985±4 Ma, obtained by single-zircon Pb evaporation, and Sm–Nd crustal residence age (TDM) of 2.17 Ga, with Nd(T) +0.74, suggesting a juvenile protolith. The exact origin and role of the Caxias Microtonalite remain uncertain. It may be interpreted as representing either a late manifestation of the regionally dominant Tromaí magmatism, or a juvenile episode unrelated to this major magmatism. Rock, quartz veins, and saprolite geochemistry have shown that As, Sb, Ba, Rb, V, Cr, Co, and Ni, as well as Au, are useful elements that can be used in exploration for similar deposits in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号