首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

2.
We investigate the effects of vertical relative motion between gas and liquid on eruption styles by formulating a model for 1-dimensional steady flow in volcanic conduits. As magma ascends and decompresses, volatiles exsolve and volume fraction of gas increases. As a result, magma fragmentation occurs and the flow changes from bubbly flow to gas-pyroclast flow. In our model, a transitional region (‘permeable flow region’) is introduced between the bubbly flow region and the gas-pyroclast flow region. In this region, both the gas and the liquid are continuous phases, allowing the efficient vertical escape of gas through the permeable structure. We describe the features of conduit flow with relative motion of gas and liquid using non-dimensional numbers α, γ and ε. The parameter α represents the ratio of effects of wall friction to gravitational load, and is proportional to magma flow rate. The parameter γ represents the degree of decompression for the gas-pyroclast flow to reach the sound velocity at α = 1, and is proportional to rc2/μ for given magma temperature and initial volatile content, where rc is conduit radius and μ is liquid viscosity. The parameter ε is defined as the ratio of liquid–wall friction force to liquid–gas interaction force in the permeable flow region, and represents the efficiency of gas escape from magma. The values of γ and ε are determined only by magma properties and geological conditions such as liquid viscosity, magma permeability and conduit radius. We formulate a 1-dimensional steady-state conduit flow model to find non-dimensional magma flow rate α as a function of magma properties and geological conditions (e.g., γ and ε) under given boundary conditions. When the relative motion is taken into account with the assumption that magma fragmentation occurs when the gas volume fraction reaches some critical values, the pressure at the fragmentation level (Pf) decreases as the magma flow rate (α) decreases or the efficiency of gas escape (ε) increases, because gas escape suppresses the increase in the gas volume fraction accompanying magma ascent. When ε is so large that Pf is below the atmospheric pressure (Pa), the flow reaches the vent before fragmentation at low α. On the other hand, when ε is so small that Pf is greater than Pa, the flow reaches the vent after fragmentation at high α. These steady-state solutions of the flow at low and high α correspond to effusive and explosive eruptions, respectively. We present a graphical method to systematically find α. On the basis of the graphical method, a simple regime map showing the relationship between the assemblage of the solutions of conduit flow and the magma properties or the geological conditions is obtained.  相似文献   

3.
We investigate the origin of diversity of eruption styles in silicic volcanoes on the basis of a 1-dimensional steady conduit flow model that considers vertical relative motion between gas and liquid (i.e., vertical gas escape). The relationship between the assemblage of steady-state solutions in the conduit flow model and magma properties or geological conditions is expressed by a regime map in the parameter space of the ratio of liquid-wall friction force to liquid–gas interaction force (non-dimensional number ε), and a normalized conduit length Λ. The regime map developed in the companion paper shows that when ε is smaller than a critical value εcr, a solution of explosive eruption exists for a wide range of Λ, whereas an effusive solution exists only when Λ ~ 1. On the other hand, when ε > εcr, an effusive solution exists for a wide range of Λ. Diversity of eruption styles observed in nature is explained by the change in ε accompanied by the change in magma viscosity during magma ascent. As magma ascends, the magma viscosity increases because of gas exsolution and crystallization, leading to the increase in ε. For the viscosity of hydrous silicic magma at magma chamber, ε is estimated to be smaller than εcr, indicating that an explosive solution exists for wide ranges of geological parameters. When magma flow rate is small, the viscosity of silicic magma drastically increases because of extensive crystallization at a shallow level in the conduit. In this case, ε can be greater than εcr; as a result, a stable effusive solution co-exists with an explosive solution.  相似文献   

4.
During an explosive volcanic eruption, tephra fall out from the umbrella region of the eruption cloud to the ground surface. We investigated the effect of the intensity of turbulence in the umbrella cloud on dispersion and sedimentation of tephra by performing a series of laboratory experiments and three dimensional (3-D) numerical simulations. In the laboratory experiments, spherical glass-bead particles are mixed in stirred water with various intensities of turbulence, and the spatial distribution and the temporal evolution of the particle concentration are measured. The experimental results show that, when the root-mean-square of velocity fluctuation in the fluid (Wrms) is much greater than the particle terminal velocity (vt), the particles are homogeneously distributed in the fluid, and settle at their terminal velocities at the base of the fluid where turbulence diminishes. On the other hand, when Wrms is as small as or smaller than vt, the particle concentration increases toward the base of the fluid during settling, which substantially increases the rate of particle settling. The results of the 3-D simulations of eruption cloud indicate that Wrms is up to 40 m/s in most of the umbrella cloud even during a large scale plinian eruption with a magma discharge rate of 109 kg/s. These results suggest that relatively coarse pyroclasts (more than a few mm in diameter) tend to concentrate around the base of the umbrella cloud, whereas fine pyroclasts (less than 1/8 mm in diameter) may be distributed homogeneously throughout the umbrella cloud during tephra dispersion. The effect of the gradient of particle concentration in the umbrella cloud explains the granulometric data of the Pinatubo 1991 plinian deposits.  相似文献   

5.
The pahoehoe–aa transition for a flow exposed near Bodshil village from the western part of the Deccan Volcanic Province (DVP) is reported for the first time. The 1-km-long Bodshil flow issued as a small sheet from a pre-existing lobe. Near the source, the crust is characterised by numerous squeeze-ups. A number of gaping fractures, parallel to sub-parallel to the flow direction, are exposed on the surface in the medial portion of the flow. About 800 m away, the flow completely transforms to slabby pahoehoe. The terminal portion of the flow is characterised by concentrations of slabs, blocks and lava balls. The size and concentrations of the slabs and lava balls appear to increase along the length of the flow. Petrographic studies reveal a dominant hypohyaline texture. The flow core is coarse and is characterised by plagioclase set in a glassy matrix. The presence of clinopyroxene in addition to plagioclase and glass distinguishes the crust and interslab crust from the core. On the basis of mineralogy, a temperature range of 1146±15°C to 1169±15°C is inferred for the Bodshil flow. Increased vesicle deformation across the transition is discernible and an average D-value of <0.4 indicates moderate strain rates during emplacement. In light of the morphology and petrography, the cooling history and the mode of emplacement of the Bodshil flow is discussed. The flow originated as a small toe at the leading edge of a pahoehoe flow, and grew into a sheet by the mechanism of inflation. Continuous inflation caused the brittle crust to uplift and produce a network of inflation clefts that were subsequently occupied by squeeze-ups. Temporary stagnation of the flow due to cessation of lava supply or storage allowed the crust to grow and thicken. Renewed movement of the stored and cooled lava to the flow front at a fairly high volumetric rate was responsible for the initial disruption of the crust. High rates of crustal disruption induced higher rates of degassing and cooling, which resulted in rapid crystallisation of the fluid core. Increase in crystallinity lead to the onset of yield strength, and it is envisaged that at least the terminal parts of the flow behaved as a Bingham fluid. The Bodshil flow is unique to the DVP because it is the first to record slabby pahoehoe and provide evidence for the incipient transformation of basaltic lava from pahoehoe to aa.  相似文献   

6.
The pattern of b-value of the frequency–magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b=1.3–1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5–8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b=0.5), suggesting faulting in a more homogeneous medium.  相似文献   

7.
The lower Apalachicola–Chattahoochee–Flint River Basin in the Southeast United States represents a major agricultural area underlain by the highly productive karstic Upper Floridan aquifer (UFA). During El Niño Southern Oscillation‐induced droughts, intense groundwater withdrawal for irrigation lowers streamflow in the Flint River due to its hydraulic connectivity with the UFA and threatens the habitat of the federally listed and endangered aquatic biota. This study assessed the compounding hydrologic effects of increased irrigation pumping during drought years (2010–2012) on stream–aquifer water exchange (stream–aquifer flux) between the Flint River and UFA using the United States Geological Survey modular finite element groundwater flow model. Principal component and K‐means clustering analyses were used to identify critical stream reaches and tributaries that are adversely affected by irrigation pumping. Additionally, the effectiveness of possible water restriction scenarios on stream–aquifer flux was also analysed. Moreover, a cost–benefit analysis of acreage buyout procedure was conducted for various water restriction scenarios. Results indicate that increased groundwater withdrawal in Water Year 2011 decreased baseflow in the lower Apalachicola–Chattahoochee–Flint River Basin, particularly, in Spring Creek, where irrigation pumping during April, June, and July changed the creek condition from a gaining to losing stream. Results from sensitivity analysis and simulated water restrictions suggest that reducing pumping in selected sensitive areas is more effective in streamflow recovery (approximately 78%) than is reducing irrigation intensity by a prescribed percentage of current pumping rates, such as 15% or 30%, throughout the basin. Moreover, analysis of acreage buyout indicates that restrictions on irrigation withdrawal can have significant impacts on stream–aquifer flux in the Basin, especially in critical watersheds such as Spring and Ichawaynochaway Creeks. The proposed procedure for ranking of stream reaches (sensitivity analysis) in this study can be replicated in other study areas/models. This study provides useful information to policymakers for devising alternate irrigation water withdrawal policies during droughts for maintaining flow levels in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号