首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Geochemical Atlas of Slovak Republic (49,036 km2) at a scale of 1 : 1,000,000 was compiled during 1991–1995 together with maps of associated geochemical and ecological features at a scale of 1 :200,000. Investigations were aimed at the evaluation of concentrations and distributions of Al, As, Ba, Be, Ca, Ce, Co, Cd, Cs, Cr, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Se, Sn, Sr, Th, U, V, W, Y, Zn, Zr in groundwater (16,359 samples), stream sediments (24,422 samples), rocks (3839 samples), soils (9892 samples from 4946 profiles; A and C horizons of each profile were sampled) and forest biomass (the foliage of the forest tree species from 3063 plots was sampled). In groundwater field measurements of temperature, pH, conductivity, dissolved O2, acidity, alkalinity were done. The evaluation was oriented to the natural radioactivity of the Slovak territory as follows: rocks (K, U, Th, Utot and dose rate, 15,573 reference spectrometric points), radon risk and water (Unat, 226Ra, 222Rn; 5271 samples). The main objective of the Geochemical Atlas was to construct single-component maps showing concentrations of chemical elements, compounds and measured parameters in the researched media of Slovakia at a scale of 1 : 1,000.000 and to create interactive databases of chemical composition and/or measured parameters of groundwater, biomass, rocks, soils, stream sediments and natural radioactivity, for the entire territory of the Slovak Republic. The single-component maps are not constructed in the part ‘Rocks’, where all the main rocks types of Slovakia are presented in the ‘Map of lithogeochemical rock types of Slovakia at a scale of 1: 500,000’. The edition of six atlases has been planned. In 1997 the first three atlases will appear (Groundwater, Biomass, Natural Radioactivity). Publishing of last three atlases (Rocks, Soils, Stream Sediments) is planned for 1998. Since the analytical works on stream sediments were finished during 1997, it was not possible to present here the results of that part of the Geochemical Atlas.  相似文献   

2.
Health risk, defined as possibility or probability of health damage, illness or death of humans due to exposure to risk factors in the environment, was derived for geological environment (soils) and estimated at national scale for the whole Europe and at more detailed regional scale for Slovak Republic. The assessment was based on data obtained from international geochemical mapping of Europe (Geochemical Atlas of the Europe—827 soil samples) and national geochemical mapping programme of the Slovak Republic (9,860 soil samples). The following chemical elements were evaluated: As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn. The health risk assessment method was based on calculations of average daily doses of individual elements analysed in every collected soil sample. Exposure levels were set by using exposure parameters and reference doses from integrated databases of US EPA. The results of calculations were transformed into various sorts of maps (dot, pixel) to delineate areas where increased contents of risk elements can pose risk to human health. The average levels of chronic and carcinogenic risk are presented in the form of tables for single European countries and administrative units of Slovak republic. The results of European mapping (Geochemical Atlas of Europe) indicate that increased levels of potentially toxic elements in soil (mainly As, Pb and Ni) occur primarily in the countries of southern and western Europe. Such elements are associated with increased health risk for resident population. For the countries of northern Europe health risk was estimated at significantly lower level. Relatively high sampling density in Slovak Republic made it possible to calculate health risk at more detailed scale for individual administrative units (municipalities, provinces). The increased health risk level was found in areas well known for high soil contamination (e.g. mining areas).  相似文献   

3.
During 1984 and 1985, the Geological Survey of Finland carried out regional geochemical mapping of till, at a scale of 1:2,000,000, as part of a programme to produce data for the first Geochemical Atlas of Finland. The Atlas is designed to give comprehensive background information on the distribution of elements in rocks, soils, and the surficial environment.  相似文献   

4.
Definition of geochemical background in exploration and environmental geochemistry has always been regarded as contingent upon scale and investigated locality but mostly under assumption that hosts of processes that produce the data more or less conform individually to Gaussian law of “central tendencies”. Recently, understanding of pedogenesis as synergetic process being characterized by non-linear dynamics renders thermodynamic approach directly applicable in assessment of geochemical thresholds, with concepts of linearity and normality set alongside in solving the problems of soil geochemistry. Seen from this perspective the work is an attempt to relate conceptual fundamentals of non-linear dynamical theory to basic statistical methods in order to elucidate the nature and origins of element subpopulations hidden in the original geochemical data from the soils of Istrian Peninsula (western Croatia). To this purpose the two major groups of soils were selected for analysis depending on the type of bedrock as one of the main soil-forming factors. Geochemical data were subjected to the trimming procedure by which the outliers were removed from the total data collective and attributed to non-linear causes precluding simple cause-and-effect relationships as the sine qua non of Gaussian distribution. Geochemical background is then defined as the normal range of data of the remaining (trimmed) dataset indicating the “thermodynamic branch” of the specific soil processes as opposed to outliers being described as dissipative structures.  相似文献   

5.
The Zlata Idka village is a typical mountainous settlement. As a consequence of more than 500 years of mining activity, its environment has been extensively affected by pollution from potentially toxic elements. This paper presents the results of an environmental-geochemical and health research in the Zlata Idka village, Slovakia. Geochemical analysis indicates that arsenic (As) and antimony (Sb) are enriched in soils, groundwater, surface water and stream sediments. The average As and Sb contents are 892 mg/kg and 818 mg/kg in soils, 195 mg/kg and 249 mg/kg in stream sediments, 0.028 mg/l and 0.021 mg/l in groundwater and 0.024 mg/l and 0.034 mg/l in surface water. Arsenic and Sb concentrations exceed upper permissible limits in locally grown vegetables. Within the epidemiological research the As and Sb contents in human tissues and fluids have been observed (blood, urine, nails and hair) in approximately one third of the village’s population (120 respondents). The average As and Sb concentrations were 16.3 μg/l and 3.8 μg/l in blood, 15.8 μg/l and 18.8 μg/l in urine, 3,179 μg/kg and 1,140 μg/kg in nails and 379 μg/kg and 357 μg/kg in hair. These concentrations are comparatively much higher than the average population. Health risk calculations for the ingestion of soil, water, and vegetables indicates a very high carcinogenic risk (>1/1,000) for as content in soil and water. The hazard quotient [HQ=average daily dose (ADD)/reference dose (RfD)] calculation method indicates a HQ>1 for groundwater As and Sb concentrations.  相似文献   

6.
Guidelines for a low-density geochemical survey were described in 1990 by the Western European Geological Surveys. A low-density geochemical survey of Hungary was carried out in 1991–1995. The results are useful for future surveys and for the IGCP 360 project ‘Global Geochemical Baseline’. In regions with well-developed drainage systems in Hungary, 196 catchment basins of approx. 400 km2 were delineated and flood-plain deposits sampled at their outlets. The samples were taken from 0 to 10 cm and from 50 to 60 cm depths. Samples were analysed by ICP-AES and AAS techniques in two laboratories. A Geochemical Atlas of Hungary is in preparation that will show the distribution of 25 elements in the two sampled layers. Maps for the lower layer represent regional geochemical baseline values and a geochemical subdivision of the country (maps showing the distribution of element associations) was made on the basis of factor variables. Maps constructed from the data of the upper sampling level show us the present state of contamination of the surface. The results of this survey have contributed to the establishment of guidance values for soils prepared by the Hungarian Ministry of the Environment in 1995. Safe levels were established for As, Cd, Cr, Cu, Hg, Pb and Zn and regional environmental loads plotted. Differences between the median values of the two levels are generally small. However, the concentrations of certain elements like P, Pb and S are significantly greater in the upper layer reflecting contamination from agriculture. In certain regions, the rate of sedimentation was fairly fast such that the environmental effects of ore mining in Transylvania and southern Slovakia as well as those of heavy industry in northern Hungary can be observed in samples from the lower level. The main factor controlling the geochemical pattern in Hungary is the predominance of young (Pleistocene or Miocene) clastic sediments at the surface. Approx. 90% of the surface is covered by these young sediments. This kind of survey has the disadvantage of not providing enough contrast to differentiate geologically dissimilar areas but it has the advantage to provide regional surface background geochemical data and it helps to outline areas of possible surface contamination. Based on the results of this survey we conclude that it would be much better to sample smaller, but geologically homogeneous areas in mountainous terrain to obtain data characteristic of the geochemical background of lithologic units. This approach would mean a sampling density of a few tens of km2/sample for hilly areas, and a few hundred km2/sample for lowland areas.  相似文献   

7.
基于地球化学基线的土壤重金属污染潜在生态风险评价   总被引:14,自引:1,他引:14  
地球化学基线是区分地球化学背景和异常的重要参数。在采集和测试德兴地区约5000km^2面积的479个表层土壤样品基础上,采用标准化方法确定了样品中Cu,Pb,Zn,Cd,Cr,As和Hg等7种重金属元素的基线值,并以基线作为潜在生态风险评价的参比值,对德兴地区土壤重金属污染进行潜在生态风险评价。结果表明:研究区可划分为3个潜在生态风险等级:轻微生态风险、中等生态风险和强生态风险,强生态风险区主要分布在德兴铜矿和钟家山煤矿等矿业活动区附近。其他大部分地区为轻微生态风险区。  相似文献   

8.
The continental area of Portugal is now entirely covered by a soil geochemical survey (1 site/135 km2), taking as the sampling media topsoils (upper mineral horizons, A) and organic horizons (humus, O). Standard methods for sampling, sample preparation and analysis were used in order to achieve high quality and consistent data. Each sample was analyzed for 32 chemical elements, pH, electrical conductivity and organic matter content.The main purpose of the survey was to obtain baseline levels for various chemical elements. The compilation of all data (nearly 45,000 individual data) in an organised way, led to the production of the first Soil Geochemical Atlas of Portugal. In this Atlas it is possible to find for each chemical element a set of information statistics (basic statistical parameters, boxplots, cumulative frequency curves, etc.), maps of spatial distribution, among other information of geochemical and environmental interest. This paper gives an overview of the Soil Atlas and examples of application. The data were used to calculate reference values for 9 elements of environmental importance and to obtain empirical formulae allowing the estimation of elements in the coarse fraction of soils (< 2.00 mm) from known concentration in a finer fraction (< 0.18 mm).  相似文献   

9.
安徽省江淮流域土壤地球化学基准值与背景值研究   总被引:13,自引:0,他引:13       下载免费PDF全文
基于安徽省江淮流域多目标区域地球化学调查数据资料,统计获得了表层和深层土壤地球化学基准值、背景值及相应的地球化学参数,为研究区生态环境评价及相关学科研究提供了基础。研究表明,成土母质类型对土壤元素地球化学基准值影响显著,表层土壤化学组成表现出既对深层土壤具有一定的继承性,又在表生作用下发生某些变化:表层土壤中迁移活动性强的元素和人为扰动污染的元素明显不同于深层土壤;随着地理空间位置的变化,同类成土母质形成环境、成因来源的差异导致其化学组成的空间变异,造成不同地区同类成土母质地球化学基准值有所不同。因此,土壤地球化学基准值研究应更多地考虑地质背景、物质来源等因素的影响。  相似文献   

10.
硒是人和动物必需的微量元素,基于58件标准物质的化学风化指标和硒的认定值,采用微量元素地球化学背景值的经验方程形式拟合得到表征全国范围内硒背景值的经验方程:lgc=0822×(12-WIG/100)-1061×lg(K2O/SiO2)-2704,式中c为Se的含量(单位为μg/g),风化指标WIG的变化范围为43~1116,风化指标K2O/SiO2变化范围为0020~0137。该方程所表征的是样品因风化程度不同所呈现出的硒地球化学背景值,风化程度强的样品总体上具有较高的Se地球化学背景值。将该经验方程式在广东河台和广东南昆山两个研究区进行应用,认为寻找富硒区应当优先将风化程度较强的地区视为备选区,依据全国区域化探扫面数据可以方便地确定风化程度较强的地区。在环境质量评价中可以利用Se实测值确定足硒和富硒区,利用实测值扣除背景值获得的元素含量剩余值可以有效确定残积层土壤下伏的足硒和富硒岩石,即依据全国多目标地球化学调查数据可以有效地确定足硒和富硒地质体(残积层土壤及其下伏岩石)的分布区。广东南昆山岩体中西部的岩石应属于足硒和富硒地质体。  相似文献   

11.
Kinmen Island is principally composed of low permeable granitoid and covered by a very thin sedimentary layer. Both surface and groundwater resources are limited and water demand is increasing with time. The groundwater in the granitoid has been surveyed as an alternative water source for daily use. Two to five highly fractured zones in the granitoid aquifer for each site were first determined by geochemical well logging. Accordingly, ten samples were collected from three sites. Using environmental isotopes and geochemical modeling, geochemical processes occurring due to water–rock interaction in the granitoid aquifer can be quantitatively interpreted. The stable isotopes of oxygen and hydrogen in groundwaters cluster along Taiwan’s local meteoric waterline, indicating evaporation does not have considerable effect on groundwaters. Given such a high evaporation rate for Kinmen Island, this result implies that infiltration rate of groundwater is high enough to reduce retention time through a well-developed fracture zone. NetpathXL is employed for inverse geochemical modeling. Results determine gypsum as being the major source of sulfate for deep groundwaters. The contribution from pyrite is minor. In addition, the weathering of albite to kaolinite is the dominant water–rock interaction characterizing geochemical compositions of deep groundwater in Kinmen Island.  相似文献   

12.
Although the term ‘geochemical baseline’ appears in the international geochemical mapping programmes IGCP 259 and 360, it has never been well defined. Several considerations relevant to such a definition are discussed. A geochemical baseline for an element refers to its natural variations in concentration in the surficial environment. Geochemical baselines were studied in Finland by comparing results from regional geochemical mapping programmes based on samples of till, clay and organic stream sediment. The geochemical background changes regionally with the basic geology and locally with the type and genesis of the overburden. Baseline concentrations depend on sample material collected, grain size and extraction method. In Finland, concentrations of potentially harmful elements tend to be higher in fine-grained marine and lacustrine sediments than in glacial till. Concentrations are also systematically higher in the < 0.06 mm fraction than in the < 2 mm size fraction of till samples. Only small proportions of the total heavy metal concentrations in Finnish marine clays are bioavailable. Geochemical baselines are needed for environmental legislation and political decision-making, especially in the assessment of contaminated soil. In many areas of Finland, natural concentrations of several heavy metals exceed the guide or limit values designated for contaminated soils. Thus baselines must always be verified in any assessment of sites for contamination.  相似文献   

13.
Analysis and calculation techniques of geochemical background concentrations of chemical elements in various systems is of paramount importance for applied geochemistry. Herein we assume the geochemical background as the average of natural variations in the concentrations of chemical elements determined at a territory that highly probable does not host any natural and/or anthropogenic sources of contaminating chemical elements. In the context of determining geochemical background, our research was focused on determining the concentrations of heavy metals in soils in the city of Yerevan with the application of an integrated approach. Comparison of the obtained background values with the mean concentrations of elements in the upper continental crust yields representative data, and the application of various statistical tests (±3σ, ±2σ, and boxplots) is proved to equally efficient.  相似文献   

14.
Deeply buried Mississippi Valley-type deposits that have been or are currently being mined in North America were initially discovered by drilling. Conventional geochemical methods are ineffective for detecting these ‘blind' deposits when they occur deep within sequences of stable-platform carbonates and shales. The ‘enzyme' leach is a selective analytical technique for determining trace elements associated with amorphous Mn oxide coatings in soils. In many areas of the world, the enzyme leach method is useful for detecting low-level geochemical anomalies in soils, which are associated with blind mineral deposits. Enzyme leach analysis of soils, collected at the Elmwood Mine, Tennessee, revealed high-contrast anomalies over ore bodies 370 m below the surface. In areas where the soils are in chemical equilibrium, ‘combination' anomalies occur over Zn ore bodies. These are characterized by asymmetrical halogen halos which occur around a halogen ‘central low'. Commodity metals (Zn and Pb) and trace elements associated with the ore (Cd, Ba, and Mn) form apical anomalies, which occur over the ore bodies and within the halogen halo. Under most circumstances, agricultural practices do not affect enzyme leach results. However, agricultural activity in central Tennessee appears to have altered the proportion of amorphous Mn oxides in the soils in some locations. Where the MnO2-form equilibrium of the soil has been disturbed, enzyme leach data are erratic. In the one instance where this was encountered, ratioing the data to Mn reveals anomalies which bracket the blind ore bodies.  相似文献   

15.
The study indicates that the relative content ratios of Cu, Pb and Zn in soils and sediments tend to have stability compared to those in meteorites, rocks and organisms. This stability is considered to be associated with their geochemical properties and has no relationship to the existing environments if it is not disturbed by an anthropogenic factor. In addition, it can serve as a background reference in determining the changes in environmental quality due to human activities.  相似文献   

16.
Pesticides are very often spread in agricultural and forest areas covering important groundwater bodies in Quaternary sand and gravel deposits. They are mostly synthetic organic chemicals used for plant protection against predators and competing herbs. According to their radius of action they can be separated into herbicides, insecticides, nematicides, acaricides, molluscicides, rodenticides, fungicides, and bactericides. With respect to the risks of groundwater contamination by pesticides, only the first three groups are of interest. For a risks assessment of groundwater contamination, detailed knowledge of the geochemical behaviour of the pesticides and of the physico-chemical processes controlling their persistence and transport in the sediments is necessary. These processes can be summarized as dissolution/precipitation, adsorption/ desorption, degradation and transport processes in the soil in the unsaturated and saturated zones. Furthermore, the type of plant production being established in the area has to be considered. In the case of crop rotation the applied pesticides are changed every year and the risk of groundwater contamination is normally low because of retardation and degradation. In soils used for special-purpose crops, an accumulation of pesticide residues is possible, because the same substances are applied every year. Especially on sandy soils the leaching of residues can lead to severe groundwater contamination.  相似文献   

17.
Geochemical signatures of groundwater in Kalpakkam plant site were used to identify the geochemistry of the unconfined coastal aquifer. Ground water samples collected from 14 borewells around the study area were studied for four different seasons viz. Summer, South-west monsoon, North-east monsoon and Post-monsoon to identify the major geochemical processes activated in the study area. Data obtained through chemical analyses of groundwater samples were used for graphical plots and geochemical calculations. Piper, Chloro alkaline indices and Chadda’s diagram were determined for geochemical classification of the groundwaters. Identified geochemical processes were verified and quantified using hydrogeochemical aqueous speciation model, PHREEQC to find out the Saturation Indices (SI) of the possible minerals of the study area. It was observed that majority of the bore well samples were under saturated with respect to minerals such as Gypsum, Aragonite and oversaturated with respect to dolomite and calcite. Parameters such as ion exchange and reverse ion exchange, saline water incursion were observed due to the presence of saline water bodies in addition to dissolution of minerals.  相似文献   

18.
 The San Antonio-El Triunfo mining district, located at a mountainous region 45 km south-east of La Paz, Baja California, has been worked since the late 1700s. Mine waste material produced during 200 years of mineral extraction area poses a risk of local groundwater pollution and eventually, regional pollution to the Carrizal (west basin) and the Los Planes (east basin) aquifers. There are different types of deposits in the mining area. These are dominated by epithermal veins, in which arsenopyrite is an important component. Carrillo and Drever (1998a) concluded that, even though the amount of mine waste is relatively small in comparison to the large scale area, significant As in groundwater derived from the mine waste piles is found locally in the groundwater. This paper shows the results of geochemical analyses of groundwater samples from the San Antonio-El Triunfo area and the Carrizal and Los Planes aquifers during several years of monitoring (1993–1997). The highest values of total dissolved solids (TDS) and As are in the mineralized area where the mining operations occurred (∼1500 ppm TDS and 0.41 ppm As). The lowest concentrations of TDS and As are, in general, away from the mineralized area (∼500 ppm TDS and 0.01 ppm As). Sulfate and bicarbonate (alkalinity) are, in general, high near the mineralized area and low away from it. The arsenic concentrations vary seasonally, especially after the heavy summer thunderstorms. Geochemical modeling (MINTEQA2 and NETPATH) and analysis of the regional geochemical evolution of the groundwater from the mining area towards the aquifer of Los Planes shows that the most likely hydrochemical processes include: dilution, precipitation of calcite, and adsorption of As onto surfaces of iron oxyhydroxides (ferrihydrite). These processes act as natural controls to the extent and amount of As pollution in the Carrizal and Los Planes aquifers. Received: 4 May 1999 · Accepted: 22 February 2000  相似文献   

19.
《Applied Geochemistry》2005,20(1):157-168
In monitoring a minor geochemical element in groundwater or soils, a background population of values below the instrumental detection limit is frequently present. When those values are found in the monitoring process, they are assigned to the detection limit which, in some cases, generates a probability mass in the probability density function of the variable at that value (the minimum value that can be detected). Such background values could distort both the estimation of the variable at nonsampled locations and the inference of the spatial structure of variability of the variable. Two important problems are the delineation of areas where the variable is above the detection limit and the estimation of the magnitude of the variables inside those areas. The importance of these issues in geochemical prospecting or in environmental sciences, in general related with contamination and environmental monitoring, is obvious. In this paper the authors describe the two-step procedure of indicator kriging and ordinary kriging and compare it with empirical maximum likelihood kriging. The first approach consists of using a binary indicator variable for estimating the probability of a location being above the detection limit, plus ordinary kriging conditional to the location being above the detection limit. An estimation variance, however, is not available for that estimator. Empirical maximum likelihood kriging, which was designed to deal with skew distributions, can also deal with an atom at the origin of the distribution. The method uses a Bayesian approach to kriging and gives intermittency in the form of a probability map, its estimates providing a realistic assessment of their estimation variance. The pros and cons of each method are discussed and illustrated using a large dataset of As concentration in groundwater. The results of the two methods are compared by cross-validation.  相似文献   

20.
Ophiolitic sequences in Northern Apennines are usually exploited as source of raw material for civil engineering works. Grinding procedures of basalts imply the production of dusts with relatively high concentration of PHES. This paper studied the increase of geochemical risk when washing mud produced at Sasso di Castro quarry site (Tuscany) is reused as rock keeper in a near dismissed quarry and highlighted geochemical fractionation produced on the base of different mineral hardness. Co, Cr, Ni and V concentration measured in washing mud were higher than the limits fixed by the Italian law but compatible with background values. The mobility of these four elements during future weathering processes were estimated by considering the element transfer coefficients and assuming weathered rocks and soils as two different natural analogues of the future state of washing mud. The future concentration was estimated by considering the average lifetime of mineral grains calculated through their dissolution rate, molar volume and grain diameter. The variations of geochemical concentrations were used to estimate the percentage increase of the geochemical risk at the displacement place. After 50 years the associated geochemical risk is still considerably lower than the probability to be damaged by a single landslide event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号