首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 81 毫秒
1.
剪切作用下钙质砂颗粒破碎试验研究   总被引:4,自引:1,他引:4  
张家铭  张凌  蒋国盛  汪稔 《岩土力学》2008,29(10):2789-2793
钙质砂是一种海洋沉积物,与陆源砂比起来,钙质砂受力后易产生颗粒破碎,从而使其力学性质发生变化。对取自南沙群岛永暑礁附近海域的钙质砂进行了不同围压、不同应变下的三轴剪切试验,对试验前后的试样进行了颗粒大小分析试验。试验结果表明,钙质砂在三轴剪切作用下颗粒破碎十分严重,同时用Hardin模型对其破碎进行了度量,并就围压、剪切应变与破碎之间的关系进行了分析。  相似文献   

2.
珊瑚砂是一种含钙极高的海洋生物成因材料,具有高棱角性、形状不规则、易破碎等特点。通过珊瑚砂的高压一维蠕变试验,研究颗粒破碎引起颗粒分布曲线和形状因子的演化规律。借助于高速动态图像的激光粒度粒形仪器,从统计学的角度分析试验前后颗粒形状随压力演化的关系,发现颗粒的形状因子,如长宽比、球形度和凹凸度等,随压力增加而逐渐增加。不同粒径的颗粒形状因子均向一个窄幅范围趋近,说明颗粒破碎具有无尺度性和自相似性的分形特性,分形维数随压力增加而逐渐增大,且趋近分形破碎极限。采用Hardin和Einav的方法计算相对破碎量,发现在两种计算方法下相对破碎量与压力呈幂函数关系,且幂指数相同。相对破碎量随时间增加的现象并不明显,说明在高压力下颗粒破碎主要为压缩破碎,且颗粒细化滑移填充孔隙引起的变形是造成蠕变的主要原因。  相似文献   

3.
利用南海钙质砂和阿拉伯湾钙质砂,进行侧限压缩试验,对其压缩特性进行分析,得到了相应的压缩指数;采用相对破碎率为度量指标,评价了钙质砂在压缩试验过程中的颗粒破碎情况。同时根据试验数据得到了不同初始相对密实度的砂样的塑性功,通过建立塑性功与相对破碎率以及塑性功与压缩指数之间的关系,探讨了颗粒破碎对钙质砂压缩特性的影响。研究显示,在本次试验条件下,颗粒破碎是导致钙质砂压缩变形的主要因素,钙质砂的中值粒径以及碳酸钙含量等因素对其颗粒破碎程度有明显影响;钙质砂的相对破碎率与其输入的塑性功有关,并且受到初始相对密实度的影响,采用相对密实度进行归一化后,两者呈现较好的幂函数关系;通过建立钙质砂压缩指数与塑性功之间的关系,进一步建立了钙质砂的压缩指数与相对破碎率之间的关系,经相对密实度归一化后,两者也呈现幂函数规律,此规律可以用于评价颗粒破碎对钙质砂压缩特性的影响。  相似文献   

4.
为了掌握南海钙质砂压缩变形特征及其微观机制,对3种不同粒组(S1:1.43~2mm、S2:0.5~1mm、S3:0.5~2mm)的钙质砂进行100~3200kPa压力范围的压缩试验,利用自制的砂土微观结构提取装置和图像处理软件(PCAS)获得并分析了钙质砂压缩过程中微观结构。结果表明:(1)钙质砂的大小、形状和级配对颗粒的破碎具有显著影响,当压力较低时(<800kPa),粒径较大的S1组以砂颗粒棱角破碎为主;粒径较小的S2组没有明显破裂,相对规则的颗粒形态使S2粒组在该压力范围内主要因颗粒的滚动与重分布导致压缩;级配良好的S3组除部分低宽度断肢状颗粒外其余大小、形态颗粒无明显破裂。(2)当压力较大时(>800kPa),S1组钙质砂逐渐转向以颗粒的整体破坏为主的破碎形式;S2、S3两组试样随着密实度的提高,砂颗粒的破坏以整体破碎为主。基于对破碎过程中试样微观结构变化的提取与分析,总结并提出了控制钙质砂颗粒破碎的4种接触模式:点-线接触、线-面接触、面-面接触和复合接触,可用于判断不同条件下的颗粒破碎形式。最后,讨论了钙质砂在破碎过程中颗粒几何参数的变化。  相似文献   

5.
为了揭示钙质砂在一维压缩回弹作用下的压缩变形、颗粒破碎特性以及声发射规律,对钙质砂进行了3种相对密实度下不同粒组的一维压缩回弹实验和声发射实验。通过对不同粒组、不同相对密实度的钙质砂进行一维压缩实验和同步的声发射实时监测,获得其压缩、回弹和声发射特性,最后通过筛分获得实验后的颗粒粒径分布,得出相对破碎势Br。实验结果表明:钙质砂的压缩变形由颗粒位置调整和破碎两部分组成,其中颗粒破碎是产生压缩变形的主要因素,回弹曲线近似一条直线,表明压缩变形为不可恢复的塑形变形;压力相同时颗粒粒径越大,相对破碎势Br越大。颗粒形状不同致使颗粒间填充作用与嵌合作用不同,影响颗粒的滑移与重排列,进而影响颗粒的压缩变形。两种砂的声发射计数率随粒径增大而增大,且都集中出现在800~3200 kPa的压缩阶段,钙质砂的压缩变形及破碎特性与其声发射特征具有一致性,钙质砂声发射计数率与时间关系曲线和应力与时间关系曲线吻合较好,可通过声发射计数率与时间关系曲线来反映钙质砂的力学特性。钙质砂存在一个声发射事件最少的“临界孔隙比”,本次实验中1~2 mm钙质砂临界孔隙比为1.33~1.41,试样的初始孔隙比偏离该临界值时,声发射活动会有不同程度提高。  相似文献   

6.
大位移剪切下钙质砂破碎演化特性   总被引:1,自引:0,他引:1  
为了揭示钙质砂在大位移剪切作用下的破碎及形状演化规律,对南海钙质砂进行了系列不同剪切位移下的环剪试验。首先,利用筛分和激光粒度分析获取试验后的颗粒粒径分布,分析颗粒分布变化情况;其次,通过粒径分布对破碎进行定量分析;最后,运用图像处理技术计算颗粒圆度和扁平度,分析了颗粒形状的变化情况。试验结果表明,在不同的竖向压力下,颗粒会达到不同的稳定级配,但达到稳定所需的剪切位移相同;经历大位移剪切后,出现粒径为0.01~0.075 mm钙质砂破碎严重的现象;随剪切位移的增加,颗粒的圆度和扁平度减小。针对细小颗粒破碎严重的现象,修正了相对破碎率;修正后的相对破碎率能考虑粒径为0.01~0.075 mm颗粒发生的破碎。剪切后的钙质砂颗粒更为规则,整体轮廓趋于圆形、表面更光滑。  相似文献   

7.
汪轶群  洪义  国振  王立忠 《岩土力学》2018,39(1):199-206
针对取自我国南部某海域的钙质砂样本,做了以下两方面工作:一是通过电子显微镜获取了钙质砂颗粒的几何投影图像,利用图像处理技术对图形进行黑白二值化处理,获取单元颗粒形状轮廓边界,使用圆度和粗糙度2个参数对钙质砂的颗粒形状进行定义和量化。二是通过不同围压下的三轴固结排水剪切试验及试验前后的颗分测量对比,研究了颗粒破碎对钙质砂的变形、强度、能量耗散等特性的影响。研究表明,大粒径钙质砂(粒径大于2.0 mm)和小粒径钙质砂(粒径小于0.5 mm)形态比较接近圆形、颗粒表面相对光滑;相比而言,中间粒径(粒径介于0.5~2.0 mm之间)钙质砂形状较不规则,表面棱角较多。钙质砂在三轴排水剪切过程中发生颗粒破碎,试样向着级配均匀的方向发展。随着初始围压的增大,颗粒破碎程度加大,土样整体剪胀趋势减小,而破碎引起的能量耗散增加。而在高围压(初始围压为600 kPa)剪切过程中,仅考虑摩擦耗散,以及同时考虑摩擦、体积耗散两种情况下,计算得到的最大颗粒破碎耗散分别可达土样总输入塑性功的25%和18%。  相似文献   

8.
《岩土力学》2016,(Z2):316-322
最大、最小干密度是评价砂土密实度的重要计算参数。通过钙质砂的最大、最小干密度试验,揭示了钙质砂颗粒破碎对最大干密度的影响,分析了最大、最小干密度随粒径和含水率的变化规律,并总结了钙质砂的最大、最小干密度的测试方法。研究表明,最大干密度随粒径的增大呈现先减小后增加的趋势;在最大干密度的测试中存在明显的颗粒破碎现象,使测试结果偏大;颗粒破碎量随粒径的增加先增加后减小,其中粗砂的破碎量最大;最小干密度随粒径的增大而减小,单一粒组钙质砂最小干密度的最大值仍然小于级配良好钙质砂的最小干密度,同一粒组的钙质砂的最小干密度随含水率的增大呈现出略有减小的趋势。建议钙质砂的最大干密度试验宜采用电动相对密度仪法,最小干密度试验宜采用量筒法。  相似文献   

9.
钙质砂的颗粒易碎性是造成其变形和强度特性不同于石英砂的重要性质。本文基于临界状态理论,通过一系列试验定量地描述钙质砂临界状态线随颗粒破碎的演化规律。本文试验分两个阶段进行:第1阶段研究了60~2000 kPa围压条件下钙质砂的力学特性和颗粒破碎特征;第2阶段以不同破碎率的试样为母本重塑制样,在100~300 kPa围压条件下,剪切至破碎临界状态线。试验结果表明:在较小围压(<300 kPa)条件下,松砂和密砂均表现出明显的剪胀和应变软化特性;而高围压(>1 MPa)条件下,显著的颗粒破碎会造成试样的持续剪缩;颗粒破碎存在明显围压阈值,对于松砂而言,在围压小于300 kPa条件下,颗粒基本不发生破碎;在e-lg p'平面内,破碎临界状态线的截距ΔeΓ和斜率λc均会随着修正相对破碎率Br*的增大而减小,即颗粒破碎会使临界状态线发生下移和逆时针转动;而在q-p'平面内,钙质砂的临界状态点落在同一条直线上,即存在唯一的临界状态应力比Mcr和临界摩擦角φcr。  相似文献   

10.
作为一种特殊的岩土介质材料,钙质砂具有在低压下易破碎的性质。微生物诱导方解石沉淀(MICP)技术得到了广泛的关注和认可,可用来改善钙质砂的破碎特性。文章从室内试验和离散元模拟两个角度分别对钙质砂颗粒MICP固化前后进行单颗粒压碎试验,通过Weibull分布和SEM扫描等探究了MICP对钙质砂颗粒破碎行为的影响。结果表明:离散元模拟得到的生存概率曲线及Weibull模量m值与试验结果均吻合较好,验证了该数值模型的有效性。与室内试验相比,数值模拟可以精确地反映颗粒的裂纹分布及破碎过程,且可以研究同一颗粒MICP固化前后的情形,弥补了室内实验的不足,但其取决于模型参数的选取;经过MICP固化后的钙质砂颗粒表面有明显的方解石结晶生成,颗粒表面及内孔隙分别得到一定程度的包裹和填充,导致颗粒破碎强度有明显的增强且离散性大大降低,破碎模式由“多峰型”向“单峰型”转变,局部裂纹减少,多以表面磨损和直接产生贯穿裂纹为主。  相似文献   

11.
钙质砂抗剪强度特性的环剪试验   总被引:2,自引:0,他引:2  
珊瑚礁沉积的钙质砂与石英砂的物理力学性质有较大差别。对取自南海岛礁的钙质砂进行了单次往返环剪试验以分析钙质砂的抗剪强度特性,试验中考虑了相对密实度和竖向应力对结果的影响,并与相同级配和试验条件下的石英砂进行对比分析。结果表明:钙质砂正向剪切时应力-位移曲线为软化型,具有明显的残余强度特性,而反向剪切时则表现为硬化型,正向和反向剪切强度基本一致;石英砂正向剪切和反向剪切均表现为软化型。钙质砂正向剪切和反向剪切残余强度与峰值强度的比值在0.75~0.93之间;石英砂正向剪切和反向剪切残余强度与对应峰值强度的比值在0.89~0.96之间。相同级配和试验条件下,钙质砂残余强度均大于石英砂,且强度比值基本保持在1.05~1.3之间。在100、200 kPa竖向荷载作用下,钙质砂0.5~2.0 mm的颗粒发生了破碎,破碎率分别为4%和6%。  相似文献   

12.
彭宇  丁选明  肖杨  楚剑  邓玮婷 《岩土力学》2019,(7):2663-2672
针对混合粒径钙质砂中不同粒径颗粒绝对破碎量无法获得和现有破碎率难以考虑破碎重叠掩盖破碎量这两个问题开展研究。设计了粗砂、中砂、细砂颗粒集中分布的3种级配钙质砂试样,进行侧限压缩试验。对不同粒径区间钙质砂分别染成不同颜色,拍照获取各粒径区间钙质砂破碎信息;采用Image J软件进行彩色图像颗粒分割、二值化处理、统计各颜色颗粒面积,换算得各颜色颗粒破碎后含量;并提出考虑破碎重叠掩盖的试样累积破碎率指标B_a。结果表明,随压力增大及颗粒分布集中,试样的重叠掩盖破碎量增大。混合粒径钙质砂中的中间粒径(0.25~1.00mm)颗粒易于破碎,各粒径颗粒破坏模式以颗粒边角破碎为主;累积破碎率B_a值较相对破碎率B_r较大,与垂向压力对数值间满足线性关系,为颗粒破碎研究提供了新的思路。  相似文献   

13.
为了探究加筋对钙质砂力学性质及颗粒破碎的影响,使用大型三轴仪对加筋钙质砂和素钙质砂进行了一系列不同加筋层数、加筋材料种类及围压的三轴固结排水试验。研究方法如下:首先通过三轴试验及筛分试验,得到了不同试验条件下钙质砂的主应力差-轴向应变曲线、体应变-轴向应变曲线以及试验后的级配曲线;其次通过试验结果,分析了加筋对钙质砂强度、变形及颗粒破碎的影响;最后通过将钙质砂颗粒破碎与输入能量相关联,得到了钙质砂颗粒破碎的规律。研究结果表明:加筋钙质砂强度明显高于素钙质砂,且加筋效果随加筋层数与筋材2%延伸率割线刚度的增加而增加,但随围压的增加而减少。加筋同时也可以有效抑制钙质砂的剪胀,且加筋层数越多抑制效果越明显。另外,试验结果也表明钙质砂颗粒破碎程度与输入能量之间存在特定的关系,输入能量越大颗粒破碎程度越大,且这种关系与钙质砂加筋与否关系不大。  相似文献   

14.
桩基附近土颗粒的运动行为与宏观力学表现密切相关,对揭示界面剪切机制具有重要意义。利用自主研制的大型直剪仪,结合三维数字图像相关技术(3D-DIC)全场位移测量分析系统,开展了钢−钙质砂界面循环剪切试验,研究了界面附近砂颗粒的运动行为演化规律。结果表明:界面峰值剪切应力和发挥的界面摩擦角随循环次数的增大而增加,体变特性以剪缩为主;钙质砂颗粒左右移动的幅度与距界面的垂直距离成反比,钙质砂颗粒的位置随循环次数的增大逐渐向正剪切方向移动,试验结束时上剪切盒左侧区域的钙质砂颗粒向正剪切方向移动的距离最大;钙质砂颗粒在单个循环内出现有规律的上下移动,向下移动的幅值更大,位于上层的钙质砂颗粒向下移动的位移值大于下层;钙质砂颗粒的运动速度在沿单方向剪切时,呈现出慢−快−慢的变化规律,位于上剪切盒右侧区域的钙质砂的体变特性较左侧区域更显著;网格位移值和缺失数量随循环次数的增大而增加,在试验后期趋于稳定,试验结束时的破碎带厚度为 6.21 mm。  相似文献   

15.
颗粒破碎及剪胀对钙质砂抗剪强度影响研究   总被引:3,自引:1,他引:3  
张家铭  蒋国盛  汪稔 《岩土力学》2009,30(7):2043-2048
钙质砂是海洋沉积物中的一种,富含碳酸钙或其他难溶碳酸盐类物质的特殊介质。由于其颗粒质脆,受力后易产生破碎,表现出与常规陆源砂不同的力学性质。通过对取自南沙群岛永暑礁附近海域的钙质砂进行三轴剪切试验,分析了钙质砂颗粒破碎与剪胀对其抗剪强度的影响。试验结果表明,颗粒破碎与剪胀对钙质砂强度有着重要影响,低围压下剪胀对其强度的影响远大于颗粒破碎,随着围压的增加,钙质砂颗粒破碎加剧,剪胀影响越来越小,而颗粒破碎的影响则越来越显著;颗粒破碎对强度的影响随着围压的增大而增大,当破碎达到一定程度后颗粒破碎渐趋减弱,其影响也渐趋于稳定。  相似文献   

16.
为研究钙质砂剪切特性的围压效应和粒径效应,开展了在不同粒径、不同相对密实度以及不同围压条件下的三轴剪切试验,并引入应力相对软化系数和剪胀系数对应变软化特征及剪胀特征进行了定量表征。试验研究表明,随围压的增大,不同粒径钙质砂试样应变软化特征及剪胀特征逐渐减弱,且围压与应力相对软化系数和剪胀系数均呈半对数线性相关。不同粒径钙质砂试样存在一强度临界围压和体变临界围压分别使得应变软化特征和剪胀特征消失。在粒径为5~0.075 mm范围内,对松样而言,围压对软化特征和剪胀特征存在显著影响,但与粒径不存在显著相关性;对密样而言,随粒径逐渐减小,围压对试样软化特征的影响逐渐增强,而对试样剪胀特征的影响逐渐减弱。在低围压(50 kPa)条件下,0.5~0.25 mm粒径组试样破碎最显著。  相似文献   

17.
沈扬  沈雪  俞演名  刘汉龙  葛华阳  芮笑曦 《岩土力学》2019,40(10):3733-3740
钙质砂是一种海洋生物成因的特殊岩土介质,其颗粒形态与基本性质较一般陆源砂有很大的不同。一方面通过钙质砂及石英砂的显微镜三维成像试验,对比研究了钙质砂的三维颗粒形态特征。发现相比石英砂,钙质砂颗粒棱角更显著,轮廓趋于扁平。另一方面,对两砂进行一维压缩试验,分析了各粒组含量对钙质砂压缩特性的影响规律,并利用三维形态分析从细观上解释了钙质砂的压缩宏观特性。发现相同级配、密实度下,钙质砂的压缩性比石英砂高约60%~160%(以av1-2表征),且粗粒组(5~1 mm)含量对钙质砂的压缩性影响最为显著;当粗粒组含量<25%,中、细粒组质量比值M一定时,存在最劣粗粒含量使钙质砂压缩性最大,且该值随着M的增大而减小,并提出了一个经验公式。  相似文献   

18.
曹梦  叶剑红 《岩土力学》2019,40(5):1771-1777
钙质砂是一种海洋生物沉积形成的具有特殊结构和力学性质的岩土材料,是我国南海岛礁吹填工程的物源材料。为进一步了解其蠕变特性,采用三轴流变仪对取自中国南海某岛礁的钙质砂进行不同围压条件下的长期蠕变试验研究。试验结果表明,在小于其破坏强度的恒定应力作用下,饱和钙质砂发生衰减蠕变,随时间增加,变形不断增加,但变形速率不断减小,直至变形稳定,所受应力越大则达到变形稳定所需时间越长,且蠕变变形量与所受偏应力正相关、与有效围压反相关。应力-应变与应变-时间均为非线性关系。试验研究发现,可采用幂函数对钙质砂蠕变应变-时间进行数学描述,基于试验结果,提出了一种蠕变应变与时间、偏应力和有效围压相关的四参数新的蠕变模型,可以对钙质砂的蠕变过程进行较好的数学描述;与经典的Mesri蠕变模型相比,所提出的数学蠕变模型不需要开展常规三轴压缩试验确定破坏时的峰值偏应力,减少了试验工作,具有一定的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号