首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the problem of time-varying point loads applied onto the surface of an elastic half-space and the stresses that such loads elicit within that medium. The emphasis is on the evaluation of the isobaric contours for all six of the stress components at various frequencies of engineering interest and for a full range of Poisson’s ratios. The extensive set of pressure bulbs presented herein may be of help in predicting the severity of dynamic effects in common practical situations in engineering—or even the lack thereof.  相似文献   

2.
A study is carefully conducted for the rocking response of a rigid circular foundation resting on a poroelastic half-space when subjected to seismic waves under the framework of Biot’s theory. The free-field waves, rigid-body scattering field waves and radiation scattering field waves are introduced to consider the complex behavior of the soil owing to the scattering phenomena caused by the existence of the foundation. The contact surface between the soil and the foundation is supposed to be perfectly bonded and fully permeable. Combining with the divided wave fields, two sets of dual integral equations elaborating the mixed boundary-value conditions are established, and then reduced to Fredholm integral equations. Therefore, with a semi-analytical method, the expressions of the rocking displacements are obtained. The numerical results of the rocking vibration of the foundation for incident P, SV and Rayleigh waves are presented. The influences of certain parameters, such as the permeability of the soil, the incident angle, Poisson’s ratio and the mass of the foundation, on the rocking vibration of the foundation are explored and studied. Different reactions are found when the foundation is excited by different waves.  相似文献   

3.
Summary In this paper, the disturbances produced due to time-dependent body forces in an anisotropic elastic medium resting on a semi-infinite non-isotropic layer have been discussed.  相似文献   

4.
This paper examines the axisymmetric torsional vibrations of an elastic pile and a hemispherical foundation embedded in a homogeneous elastic half-space. The embedded foundation–half-space system is decomposed into an extended half-space and a fictitious foundation. The deformations of the fictitious system are specified by an admissible function containing a set of generalized coordinates. The Lagrangian equations of motion are used to determine these coordinates associated with the assumed displacement function. Numerical results are presented for torsional impedance of an elastic pile and a hemisphere to illustrate the effects of relative flexibility and geometry. By employing certain simplifications on the pile–half-space system an approximate closed form solution is presented for the torsional impedance of an elastic pile.  相似文献   

5.
An analysis is presented of the transient flexural vibrations of an elastic column supported by an elastic half-space under the condition that an arbitrarily shaped free-field lateral acceleration and displacement are given as inputs. Applying Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column acceleration at the interface and free end, and the column and half-space displacement distributions are obtained. After the input free-field acceleration terminates, slightly damped and almost harmonically variable acceleration is observed. The acceleration frequency after the disappearance of the input acceleration nearly coincides with the resonant frequency of the system. The slight damping with the first resonant frequency, even if the half-space is soft compared with the column, is characteristic of the transient flexural vibrations of a column supported by a half-space. Such a phenomenon is not typical of the transient longitudinal vibration problem. Therefore, it may be concluded: when buildings and structures are subjected to an earthquake or an explosive force, their flexural vibrations will continue with their first resonant frequencies, even if their foundations are soft.  相似文献   

6.
Summary In this paper, steady state thermoelastic stresses in an elastic layer when there is a heat flux at one of its bounding planes, have been determined by the method of differential operators and Mittag-Leffler theorem.  相似文献   

7.
A comprehensive analytical solution is developed to examine the torsional vibration of an elastic foundation on a semi-infinite saturated elastic medium for the first time. First, the governing equations of saturated media are solved by use of Hankel transform techniques. Then, based on the assumption that the contact between the foundation and the half-space is perfectly bonded, this dynamic mixed boundary-value problem can lead to dual integral equations, which are further reduced to the standard Fredholm integral equations of the second kind and solved by numerical procedures. Numerical examples are given at the end of the paper. The numerical results indicate that the response of the elastic foundation strongly depends on the material and geometrical properties of both the saturated soil-foundation system and the load acting on the foundation. In most of the cases, the dynamic behavior of an elastic foundation on saturated media significantly differs from that of a rigid plate bearing on the elastic half-space.  相似文献   

8.
Transient flexural vibrations of an elastic column supported by an elastic half-space are investigated analytically under the condition that an arbitrarily shaped free-field lateral acceleration is given as an input. Applying the Timoshenko theory to the column and making use of Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column free end acceleration are presented. Numerical results obtained from the Timoshenko theory are compared with those of a previous paper1 (applying the Bernoulli-Euler theory to the column), and the effects of column slenderness and foundation stiffness on the transient flexural vibrations of the column are clarified.  相似文献   

9.
An alternative technique to obtain the dynamic response of a massless rigid circular foundation resting on a uniform elastic half-space when subjected to harmonic plane waves is presented. The technique relies on the use of an integral representation involving the free-field ground motion and the contact tractions obtained in the course of calculating the dynamic force–displacement relationship of the foundation for external forces. Tables listing the translational and rotational components of the response of the foundation for non-vertically incident SH, P, SV and Rayleigh waves are presented.  相似文献   

10.
The two-dimensional response of a viscoelastic half-space containing a buried, unlined, infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane SH, P, SV and Rayleigh waves is obtained by an indirect boundary integral method based on the two-dimensional Green's functions for a viscoelastic half-space. An extensive critical review of the existing numerical results obtained by other techniques is presented together with some new numerical results describing the motion on the ground surface and the motion and stresses on the wall of the cavity for P, SV, SH and Rayleigh waves.  相似文献   

11.
Summary In the present paper the small strain theory has been applied to find the stresses and deformation in the interior of the earth models corresponding to different non-uniform density distributions when the elastic parameters are not constant. The case of uniform density distribution in the interior of the earth assumed to be a self-gravitating isotropic sphere has also been considered in the light of the same theory.  相似文献   

12.
Forward seismic problems are solved for elastic media by rigorous methods (i.e., methods with controllable accuracy). Analysis of the current state of research on this subject suggests that the most promising methods are based on integral and integro-differential equations, notwithstanding the rather modest results of their application to solving forward problems in the theory of elastic vibrations. The second Green integral theorem for seismic waves, formulated and proven in the paper, yields a system of two boundary (surface) integral equations for the displacement vector u(M 0) and the normal (to the boundary surface) vector component of the stress tensor tn(M 0). The integrands of the surface integrals in terms of which the function tn(M 0) is expressed on both sides of the interface between the medium and the heterogeneity contain the second derivatives of the Green’s tensor functions ? e (M 0, M) and ? i (M 0, M), respectively, which are responsible for a cubic singularity (third-order singularity) if the integration point M coincides with the observation point M 0. An original method of eliminating the cubic singularity proposed in the paper involves special tensor normalization of the integrals on the outer and inner sides of the interface and subsequent subtraction of one integral from another in order to construct the second integral equation.  相似文献   

13.
Recently, considerable efforts have been devoted to evaluation of seismic dynamic response of a circular tunnel. Conventional approaches have considered integral liners embedded in an elastic medium. In this study, we re-examine the problem with piecewise liners embedded in a porous medium. Surrounding saturated porous medium of tunnels is described by Biot's poroelastic theory, while the liner pieces and the connecting joints are treated as curved beams and characterized by curved beam theories. The scattered wave field in the porous medium is obtained by the wave function expansion method. The differential equations governing the vibration of a curved beam is discretized by the General Differential Quadrature (GDQ) method. The domain decomposition method is used to establish the global discrete dynamic equations for the piecewise tunnel. The surrounding soil and the tunnel are coupled together via the stress and the displacement continuation conditions which are implemented by the boundary collocation method. Numerical results demonstrate that the stiffness difference between the liner piece and the connecting joints has a considerable influence on the internal forces of the liner piece.  相似文献   

14.
Summary Axial Rayleigh-waves in a magnetic field are considered for an elastic cylinder of aelotropic material, surrounded by a vacuum and for an infinite body of same material with cylindrical cavity.  相似文献   

15.
Summary For a semi-infinite incompressible elastic medium which is subjected to a large primary extension (or compression) in a directionOX 1 parallel to the free surfaceOX 1 X 2, the dispersion equation is derived for surface waves of small amplitude. It is shown in particular that in some cases for directions of propagation close toOX 2, the surface waves exhibit novel features in that the displacement at the surface is almost parallel toOX 1, that is, nearly transverse to the direction of wave-propagation.  相似文献   

16.
A study on the transient response of a circular cylindrical shell of finite length embedded in a homogeneous, isotropic and linear elastic half-space is presented. The soil-structure system is subjected to suddenly applied explosion waves. The numerical method employed is a combination of the time domain semi-analytical boundary element method used for the semi-infinite soil medium and the finite strip method used for the circular cylindrical shell. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. The dynamic responses at the interface between the soil medium and the structure for every time step are obtained. Numerical examples are presented in detail to demonstrate the use and versatility of the proposed method. The following parameters are found to affect the response: (1) the slenderness ratio of the length over the diameter of the shell, L/D; (2) the relative wall thickness, h/a; (3) the relative stiffness ratio between the shell and the medium, Es/Em; and (4) the incidence angle of the explosion wave, α.  相似文献   

17.
The paper presents results of a parametric study of vertical oscillations of a flexible circular plate on the surface of an elastic half-space and an elastic layered system. The solution of the problem is based on the ‘ring method’. Vertical oscillations have been analysed to determine the displacement and soil reaction distributions at the soil-plate interface and the impedance functions. Parameters of the study include material and geometrical properties of a soil system and a plate and the load distribution on the plate. The results indicate significantly different behaviour of a flexible plate from that of a rigid one. Based on the observed behaviour, a classification of plates has been suggested.  相似文献   

18.
Summary Rotatory vibrations of a thick spherical shell of isotropic non-homogeneous material with rigidity and density given by (i) = 0 r -2 withQ =Q 0 r -2 e 2mr and (ii) = 0 r m with =Q 0 r n have been discussed and the frequency equation is derived with numerical enumeration of frequency in each case.  相似文献   

19.
Summary The problem of concentrated line load moving with supersonic speed along the boundary of an isotropic heterogeneous medium has been solved as a plane strain problem. The stresses and displacements in the heterogeneous case considered are found to decay exponentially with distance.  相似文献   

20.
Based on the analytical layer-element method, an analytical solution is proposed to determine the dynamic interaction between the elastic circular plate and transversely isotropic multilayered half-space. The dynamic response of the elastic circular plate is governed by the classical thin-plate theory with the assumption that the contact surface between the plate and soil is frictionless. The total stiffness matrix of the transversely isotropic multilayered half-space is acquired by assembling the analytical layer-element of each soil layer with the aid of the continuity conditions between adjacent layers. According to the displacement condition of coordination between the plate and soil, the dynamic interaction problem is reduced to that of multilayered transversely isotropic half-space subjected to axisymmetric harmonic vertical loading. Some numerical examples are given to study the vertical vibration of the plate, and the results indicate that the dynamic response of elastic circular plate depends strongly on the material properties of the soils, the rigidity of the plate, the frequency of excitation and the external load form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号