首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinguishing Iron-Reducing from Sulfate-Reducing Conditions   总被引:2,自引:0,他引:2  
Ground water systems dominated by iron‐ or sulfate‐reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS?, and S= species and denoted here as “H2S”). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron‐ and the sulfate‐reducing microorganisms that catalyze the production of Fe2+ and H2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2~0.2 to 0.8 nM). Conversely, if the Fe2+/H2S ratio was less than 0.30, consistent sulfate‐reducing (H2~1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron‐ and sulfate‐reducing zones or concomitant iron and sulfate reduction under nonelectron donor–limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.  相似文献   

2.
Volcanic gases from Showashinzan are qualitatively the same as those liberated from igneous rocks when they are heated in vacuum. Their main components are H2O, CO2, and H2. Then follow HCl, HF, N2, SO2, H2S, S, CH4, CO, Ar, Si, B, Mg, Na, K, Ca, Al, Fe, P, Br, NH3, As, Zn, Sr, Ba, Cu, Pb, Sn, Sb, Bi, Ge, Ag, Cr, Ni, Mo, Rn, Ra, etc. They come through fumaroles of high temperature (~750°C.). Metallic compounds deposit as sublimates around the outlet of fumaroles. They are fractionated there according to their thermodynamic properties. When the temperature of gases falls, heavy metal elements deposit before reaching the surface of the earth. Ra is among them. Owing to the contribution of Ra thus depositted, Rn content of vapor is larger in low temperature fumaroles than in high temperature ones. Chemical compounds of H, C, N, O, and S vary their composition according to the condition of temperature and pressure. Sulfur exists as SO2 more than H2S. As the temperature of gases falls, SO2 and H2 decrease and H2S increases. Mutual relation among them is ruled by the chemical equilibrium: SO2+3H2=H2S+2H2O. The structure of Showashinzan is not simple. Some deviations from the general rule are explained in connection with ground water.  相似文献   

3.
Studies of the sulphur hydrolysis reaction, 4S + 4H2O /ag 3H2S + HSO4? + H+, were conducted between 200 and 320°C in sealed silica glass tubes. The isotope exchange reaction: H218O + HS16O4? /ag H216O + HS18O4? is so rapid at the low pH (1.5–3) as to be unquenchable. However, the sulphur isotope exchange reaction: H234S+ H32SO4? /ag H232S + H34SO4? gave t12 values of 0.1, 0.3 and 1.7 days at 320, 260 and 200°C respectively and equilibrium H2S - HSO4? sulphur isotope fractionation values of 20.9, 22.4, 24.8, 26.7 and 29.3‰ at 320, 290, 260, 230 and 200°C respectively. This latter data is represented by: 1000lnα(HSO4??H2S) = 5.07 (106T?2) + 6.33, and has valuable applications in geothermal and ore deposit studies.  相似文献   

4.
Hydrogen sulphide (H2S) is one of a number of gaseous species associated with geothermal activity in the Taupo Volcanic Zone (TVZ), New Zealand. The city of Rotorua is located within Rotorua Caldera in the TVZ and is one of the few urban areas in the world where a large population (>60,000 people) is frequently exposed to geothermal emissions. In order to evaluate the health hazard from long-term exposure to H2S being emitted from the Rotorua geothermal field, a passive sampler has been developed to measure concentrations of H2S at many locations across the city simultaneously. In contrast to other passive or pump-based samplers, the sampler is inexpensive, easily mass-manufactured, and involves the reaction of H2S with silver halide contained in treated photographic paper. H2S-exposed paper shows a distinct colour change from white to dark brown as H2S concentrations increase and is sensitive to concentrations between ≪30 and around 1000 ppb. Rotorua city can be divided into three regions—an area of low H2S concentration in the west, a ‘corridor’ of high concentrations running north–south through the city centre where H2S is being emitted, and an area of medium concentration to the east which is influenced by the prevailing wind direction, creating a plume from the central corridor. The data give new insight into the subsurface routes of degassing in the Rotorua geothermal field, by showing the surface expression of the main upflow zone and the direction of the conjectured faulting below.  相似文献   

5.
Based on results of microscopic observation and laser Raman analysis about fluid inclusions, multiple special forms of immiscible inclusions that contain sulphur, liquid hydrocarbon, bitumen, etc. were discovered in samples collected from the H2S gas reservoir-containing carbonates in the Lower Triassic Feixianguan Formation in the Jinzhu-Luojia area, Kai County, Sichuan Province. Based on the lithology and burial history of the strata involved as well as measurement results of homogenization temperature of fluid inclusions, bitumen reflectivity, etc., it is concluded that the H2S in the gas reservoir resulted from the thermal reaction between hydrocarbons in reservoir and CaSO4 in the gypsum-bearing dolostone section at the high temperature (140°C–17°C) oil-cracked gas formation stage in Late Cretaceous. Thereafter, research on a great number of immiscible inclusions in the reservoir reveals that elemental sulphur resulted from oxidation of part of the earlier-formed H2S and further reaction between sulphates, hydrocarbons and H2S in geological fluids in H2S-bearing gas reservoir at a temperature of 86°C–89°C and a pressure of 340×105Pa and during the regional uplift stage as characterized by temperature decrease and pressure decrease in Tertiary. Meanwhile, gypsum, anhydrite and calcite formed at this stage would trap particles like elemental sulphur and result in a variety of special forms of immiscible inclusions, and these inclusions would contain information concerning the complexity of the fluids in the reservoir and the origin of H2S and natural sulphur in the gas reservoir.  相似文献   

6.
This study investigated the effectiveness of a new packing material, namely mixed rice husk silica with dried activated sludge for removing H2S. Dried sewage sludge was collected from Putrajaya sewage treatment plant in Malaysia. Rice husk silica was prepared at temperature of 800°C, after acid leaching and mixed with dried sewage sludge to be utilized in a polyvinyl chloride filter. The system was operated under variable conditions of two parameters, different inlet gas concentration and different inlet flow rate. H2S was passed through the filter with one liter of the packing material. More than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 90–45 s and 300 ppm inlet concentration was observed. However, the RE decreased to 96.87% with the EBRT of 30 s. The maximum elimination capacity (EC) of 52.32 g/m3/h was obtained with the RE of 96.87% and H2S mass loading rate of 54 g/m3/h, while at the RE of 99.96%, maximum EC was 26.99 g/m3/h with the H2S mass‐loading rate of 27 g/m3/h. A strong significant correlation between increasing of H2S mass loading rate and pressure drop was also detected (p < 0.01). Maximum pressure drop was 3.0 mm H2O after 53 days of operating time, the EBRT of 30 s, and 54 g/m3/h of H2S loading rate. These observations suggest that the mixture of rice husk silica with dried activated sludge is a suitable physico‐biological filter for H2S removal.  相似文献   

7.
The glass/Ag0, Ag2S electrode applicable for in situ determination of H2S was tested in solutions of inert electrolytes. No effects on sensitivity, selectivity and slope were found up to an ionic strength of ≈0.7 (artificial seawater). In salty brines such as Dead Sea water or NaClsat. solution a positive potential shift and a slope increase was observed. This corresponds, presumably, to salting-out of the gas. Within the observed precision range of the detection method (+-3%) the electrode allows the measurement of H2Sconcentrations (lower limit of detection: 10−5.5 M Stot). Nevertheless, as a consequence of its half cell combination, the electrode could be a means for the direct detection of the salting coefficient of H2S in hypersaline media (I≫0.1).  相似文献   

8.
A new method for measuring H2S mass flux from the ground, based on the digital analysis of the interference colours produced by the sulphidation of copper passive samplers (CPS), is proposed and discussed in this article. CPS sulphidation has a wide range of linear responses to H2S doses and can be used together the accumulation chamber method to estimate gas fluxes from natural degassing areas. These are often characterized by the presence of vent centred degassing areas (VCDAs), which are recognizable from the absence or rarefaction of vegetation due to high acid gas concentrations in the soil pores and in the air at ground level. A reference emission curve, accounting for the advective and diffusive components of the flux, can be modelled and used to estimate the total H2S mass released from each VCDA. The application of this method can be supported by remote sensing analysis that helps identify VCDAs in the field in perivolcanic H2S degassing areas.As an illustrative application, H2S gas fluxes from the ground were measured in spring 2007 at the Zolforata di Pomezia degassing area (ZPDA, Alban Hills, Central Italy) using an accumulation chamber internally equipped with CPS. H2S peak fluxes were measured over the vents after remote sensing assisted identification of the VCDAs. Further measurements were carried out in two ponds and one artificial channel bordering the study area. The total atmospheric flux released at the ZPDA, estimated to be about 1207.6 kg day? 1, was calculated as the summation of the fluxes from all the H2S sources, the background flux being negligible.  相似文献   

9.
H2S is a most important biogenic sulfur compound with regard to the atmospheric sulfur cycle. Our present knowledge of the spatial and temporal distribution of this trace gas is rather incomplete owing to unreliable analytical methods. Therefore, a new method for the analysis of H2S in the g-range was applied. This paper deals with the results of ground- and aircraft measurements of H2S in unpolluted air over swamps and tidal flats. Based on the measured vertical distributions a removal coefficient of 2.3×10–5 sec–1 and an average lifetime of 12 hours were calculated. Some conclusions of the contribution of H2S to the atmospheric sulfur budget are added.  相似文献   

10.
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft.  相似文献   

11.
Different systems of gas collection were tested on Vulcano Island (Italy). Sampling flasks do not keep the real H2S/SO2 ratio. Warm chemical traps (Sicardi, 1940) and warm field gas chromatography keep the gas samples in equilibrium. A mixture of H2S and SO2 is emitted at the crater but at the sea shore H2S is predominant. Such difference is interpreted as due to the percolation across near-surface water tables. The same gas composition was observed within magmatic gases (Merapi) using identical techniques and the difference of composition at the shore and at the crater can be used to explain different aerosols compositions.  相似文献   

12.
The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the result of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon isotopic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons being consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secondary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (−18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being released firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.  相似文献   

13.
Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11?±?2?t day?1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3?t day?1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990?±?85?t day?1, with 605?t day?1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6?mol% of H2O; the main noncondensable components amounted to 97.4?mol% CO2, 1.5?mol% SO2, 0.6?mol% H2S, and 0.35?mol%?N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88?±?0.25?R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47?%, respectively.  相似文献   

14.
The Main Endeavour Field, northern Juan de Fuca Ridge, experienced intense seismic activity in June 1999. Hydrothermal vent fluids were collected from sulfide structures in September 1999 and July 2000 and analyzed for the abundance of H2, H2S, CH4, CO2, NH3, Mg and Cl to document temporal and spatial changes following the earthquakes. Dissolved concentrations of CO2, H2, and H2S increased dramatically in the September 1999 samples relative to pre-earthquake abundances, and subsequently decreased during the following year. In contrast, dissolved NH3 and CH4 concentrations in 1999 and 2000 were similar to or less than pre-earthquake values. Aqueous Cl abundances showed large decreases immediately following the earthquakes followed by increases to near pre-earthquake values. The abundances of volatile species at the Main Endeavour Field were characterized by strong inverse correlations with chlorinity. Phase separation can account for 20-50% enrichments of CO2, CH4, and NH3 in low-chlorinity fluids, while temperature- and pressure-dependent fluid-mineral equilibria at near-critical conditions are responsible for order of magnitude greater enrichments in dissolved H2S and H2. The systematic variation of dissolved gas concentrations with chlorinity likely reflects mixing of a low-chlorinity volatile-enriched vapor generated by supercritical phase separation with a cooler gas-poor hydrothermal fluid of seawater chlorinity. Decreased abundances of sediment-derived NH3 and CH4 in 1999 indicate an earthquake-induced change in subsurface hydrology. Elevated CO2 abundances in vent fluids collected in September 1999 provide evidence that supports a magmatic origin for the earthquakes. Temperature-salinity relationships are consistent with intrusion of a shallow dike and suggest that the earthquakes were associated with movement of magma beneath the ridge crest. These data demonstrate the large and rapid response of chemical fluxes at mid-ocean ridges to magmatic activity and associated changes in subsurface temperature and pressure.  相似文献   

15.
Summary Effects of mechanical shocks of about 0.5 msec in duration on the remanent magnetization of igneous rocks are experimentally studied. The remanent magnetization acquired by applying a shock (S) in the presence of a magnetic field (H), which is symbolically expressed asJ R (H+S Ho), is very large compared with the ordinary isothermal remanent magnetization (IRM) acquired in the same magnetic field.J R (H+S Ho) is proportional to the piezo-remanent magnetization,J R (H+P+Po Ho).The effect of applyingS in advance of an acquisition of IRM is represented symbolically byJ R (S H+ Ho).J R (S H+ Ho) can become much larger than the ordinary IRM, and is proportional to the advance effect of pressure on IRM,J R(P+ P0 H+ H0).The effect of shockS applied on IRM in non-magnetic space is represented by the shock-demagnetization effect,J R(H+ H0 S), which also is proportional toJ R(H+ H0 P+ P0).Because, the duration of a shock is very short, a single shock effect cannot achieve the final steady state. The effect ofn-time repeated shocks, is represented byJ 0+J *(n), whereJ 0 means the immediate effect and J *(n) represent the resultant effect of repeating, which is of mathematical expression proportional to [1–exp {–(n–1)}].
Zusammenfassung Die Effekte des mechanischen Stosses mit der Dauer von etwa 0.5 ms auf der remanenten Magnetisierung wurden experimentell nachgesucht. Das erworbene Remanenz der Magnetisierung nach dem Stoss (S) unter dem magnetischen Feld (H), das hier symbolisch alsJ R(H+ SH0) bezechnet wird, ist sehr stark im Vergleich mit der normalen isothermischen remanenten Magnetisierung (IRM) unter demselben magnetischen Feld.J R(H+ S H0) ist im Verhältnis zur piezoremanenten Magnetisierung,J R(H+ P+ P0 H0).Der Effekt vom Stoss vor der Erwerbung von IRM wird symbolisch alsJ R(S H+ H0) bezeichnet.J R(S H+ H0) kann viel stärker als die normale IRM werden, im verhältnis zum Effekt des vorausgegebenen Drucks auf IRMJ R(P+ P0 H+ H0).Der Effekt des Stosses auf IRM im Raum ohne magnetisches Feld wird mit dem Stossentmagnetisierungseffekt dargestellt,J R(H+ H0 S), der auch proportional zuJ R(H+ H0 P+ P0) ist.Da die Dauer einzelnen Stosses sehr kurz ist, kann der Effekt des einmaligen Stosses den endgültigen stabilen Zustand nicht erreichen. Der Effekt nachn-maligen wiederholten Stossen wird alsJ 0+J *(n) bezeichnet, wobeiJ 0 den unverzüglichen Effekt bedeutet, und J *(n) beschreibt den resultanten Effekt der Stosswiederholung, dessen mathematische Darstellung proporational zu [1–exp {–(n–1)}] ist.
  相似文献   

16.
A study was performed in two submerged, pilot‐scale biofilm bioreactors operated under different conditions to determine the relationship between the operating parameters and H2S emission. H2S was always detected in the exhaust air at concentrations varying from 1 to 353 ppmv. The specific aeration rate was the most influencing parameter, with As < 30 kg COD (dissolved oxygen concentrations <4 mg L?1) increasing noticeably the H2S production. The periodical removal of the accumulated sludge reduced H2S emissions by ~14%.  相似文献   

17.
Multiple sulfur and oxygen isotope compositions in Beijing aerosol   总被引:1,自引:0,他引:1  
Multiple sulfur isotopes(32S, 33 S, 34 S, 36S) and oxygen isotopes(16O, 18O) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ34S values of Beijing aerosol samples range from 1.68‰ to 12.57‰ with an average value of 5.86‰, indicating that the major sulfur source is from direct emission during coal combustion. The δ18O values vary from 5.29‰ to 9.02‰ with an average value of 5.17‰, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H2O2 in July and August, whereas H2O2 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur isotope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between ?33S and CAPE.  相似文献   

18.
The mechanism of hydrogen sulfide (H2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds. Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction (BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction (TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer, indicating that the generation and accumulation of H2S have the characteristics of either a self-generated source or a near-source.  相似文献   

19.
Toxic effects of five commonly used pesticides on the biomass of a municipal activated sludge system were determined on the basis of the reduction in the oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR). Toxicity levels of the selected pesticides were determined by employing a modified OECD 209 (Organisation for Economic Cooperation and Development) method which was performed as batch experiments using a respirometer. Copper sulphate (CuSO4 · 5 H2O), copper oxychloride (Cu2Cl(OH)3), copper calcium oxychloride (CaCu3Cl2(OH)6) as copper‐based pesticides and chlorsulphuron (C12H12ClN5O4S), 2,4‐dichlorophenoxyacetic acid (2,4‐D) (C8H6Cl2O3) as synthetic organic pesticides were selected for the experiments. The EC50 values were determined to be 78, 249 and 281 mg/L for CuSO4 · 5 H2O, Cu2Cl(OH)3 and CaCu3Cl2(OH)6, respectively. Corresponding values for C12H12ClN5O4S and 2,4‐D were 860 and 3664 mg/L, respectively. Results indicated that toxicity effects of copper‐based pesticides were higher than that of synthetic organic pesticides. CuSO4 · 5 H2O was found to exert the highest toxicity among the copper‐based pesticides, whereas, C12H12ClN5O4S was determined to be the most toxic among the organic pesticides on activated sludge biomass.  相似文献   

20.
From the magmatic emanations differentiation point of view it is possible to calculate some ratios such as F/CO2, Cl/CO2, SO2/CO2, SO2/H2S, H2S/CO2 and CO2/N2 in the tumarolic gases for the forecasting of volcanic activity. In order to predict the cruptions of a volcano it is needed to select several fumaroles or hot springs having different regimes of variation of the above ratios. The study of some fumaroles composition at the Asama. Mihara, Kirishima and other volcanoes in Japan showed a close connection between volcanic gas compositions and state of the volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号